Filter results

9533 resultaten

Scale model of Indian Ocean island allows scientists to assess the impact of rising sea levels

Scientists have built a 50-metre scale replica of a coral reef island to explore how its real-life counterparts might be impacted by rising sea levels. The model has been designed to mimic atoll islands in the Maldives and the Pacific Ocean, thought to be among the most vulnerable parts of the planet as the climate changes. Over the coming two months, it will be subjected to varying wave and sea-level conditions, with its response being intensely monitored using wave sensors, current meters, video cameras and laser scanners. Researchers hope the experiment, combined with fieldwork and numerical modelling, will give them an indication of precisely how the islands might respond if sea levels and the frequency of extreme weather events continue to increase. The experiment forms part of the ARISE project, a five-year £2.8million project led by the University of Plymouth and funded through UK Research and Innovation’s Horizon Europe Guarantee programme. With partners across the world, including organisations in the Maldives and the Pacific, the project is exploring the potential for the world’s low-lying coral atoll islands to survive predicted rises in sea level through natural flooding processes. Professor Gerd Masselink, Professor of Coastal Geomorphology at the University of Plymouth and lead of the ARISE project, said: “ It is virtually impossible to record waves washing over a real atoll island, because the chances of an extreme event occurring on an instrumented island is very rare – you’d have to be instrumenting at least tens of islands spread across the Maldives and the Pacific to ‘catch’ it. This scale model will give us the opportunity to run a controlled series of scenarios and monitor with a range of instruments how the island might respond in a variety of present and future sea conditions. Combined with other measurements from the field, we hope it will give us a clear understanding of if – and how – these communities can survive in future. ” The experiment is a collaboration between the University of Plymouth, Delft University of Technology, and Deltares. It will take place in the Deltares’ Delta Flume, the world’s largest wave flume. Measuring 300m long, 9m deep and 5m wide, and with the ability to generate waves up to 2m high, the flume is the perfect place for this particular experiment. It will also enable the researchers to evaluate the impact of artificial reef structures in reducing the energy of the waves reaching the island shoreline. Such structures are increasingly being used as eco-friendly coastal defences that provide habitats for marine life as well as protecting island shorelines. Dr Marion Tissier, Assistant Professor of Coastal Waves at Delft University of Technology, said: “ Coral reefs naturally protect atoll islands from wave-driven flooding, but unfortunately, they are degrading worldwide. This experiment provides a unique opportunity to investigate the efficiency of reef restoration for coastal protection. Up to 150 eco-friendly, complex-shaped artificial reef structures will be installed on the reef of the scale model, and their effect on the waves will be systematically analysed. The large scale of this experiment is essential, as it allows us to get a realistic picture of how water moves through these complex structures, and thus of how the structures influence the wave field and ultimately flooding at the island. ” Marion Tissier of TU Delft is leading the ‘Coral reef RESToration to reduce island flooding’ (CREST) project. This project is embedded into the experimental program ARISE, led by the University of Plymouth. CREST is funded by the Top consortium Knowledge and Innovation (TKI) Delta Technology. In this project she works together with Deltares, Boskalis and the reef 3D printing startup Coastruction. Read the news article about CREST Suzanna Zwanenburg, project leader of the Deltares Delta Flume, added: “ We have built a scale model of a reef platform with an atoll island in the Deltares Delta Flume. With this unique, experimental facility, we can generate the largest artificial waves in the world, which makes it the perfect place to assess the effect of waves washing over an atoll island. The model is equipped with numerous sensors, which gives us detailed information about the wave heights, velocities and pressures along the reef platform and the overwash over the atoll island. ” The new experiment is being launched weeks after scientists returned from the Maldives, where they deployed more than 80 individual instruments on the island of Dighelaabadhoo as they seek to capture in-depth information about the energetic wave conditions during southwest monsoon season in the Indian Ocean. The measurements generated by the instrumentation will constitute the largest field campaign ever to be staged on an atoll island, and the instruments will remain deployed until August.

SURF Onderwijsawards 2023

Ook dit jaar zijn de SURF Onderwijsawards uitgereikt, aan drie professionals die een grote bijdrage geleverd hebben aan de ict-vernieuwing in het Nederlandse onderwijs. Geheel terecht ontvingen Leon Sprooten (VISTA College), Timon Idema (TU Delft) en Diana Molenschot (Thomas More Hogeschool) de SURF Education Awards 2023 . Timon was een van de eersten die het belang inzag van open leermaterialen, en dit ook in de praktijk bracht. In 2018 publiceerde hij zijn eerste open textbook , voor de opleiding Nanobiology (TU Delft & Erasmus Universiteit). Met hulp van een bijdrage door de stimuleringsregeling van SURF heeft Timon daarna, met hulp van collega’s, een reeks open leermaterialen ontwikkeld voor de bachelor- en masteropleiding Nanobiology. Maar daar bleef het niet bij. Timon heeft ook een belangrijke bijdrage geleverd aan de ontwikkeling van een publicatiedienst voor open textbooks. Via deze dienst van de TU Delft kunnen docenten, met Jupyter Books, zelf open onderwijsliteratuur publiceren. Inmiddels bevat de catalogus al meer dan dertig open textbooks, zowel klassieke als interactieve. Onder leiding van Timon zijn er verder uitgebreide handleidingen, voorbeelden en templates gepubliceerd, zodat iedereen eigen interactieve open textbooks met Jupyter Books kan schrijven. Van de masteropleiding Nanobiology is TImon sinds 2020 opleidingsdirecteur. Collega’s over Timon: Timon is het lichtende voorbeeld van een docent die docenten stimuleert om hun leermaterialen te innoveren en open te delen. Hij begrijpt dat docenten de meeste waarde hechten aan tools die zijn ontwikkeld door mensen die zelf docent zijn. Verder betrekt hij docenten én studenten actief bij zijn projecten. Alles wat hij ontwikkelt legt hij voor aan collega’s en studenten, bijvoorbeeld in workshops of conferentiepresentaties. Zo krijgt hij waardevolle feedback waarmee hij het resultaat nog beter laat aansluiten op de wensen van zijn doelgroep. Zodat docenten en studenten het waardevol vinden voor hun werk of opleiding.

Half Height Horizontal

Bipolar membranes for intrinsically stable and scalable CO2 electrolysis

The energy transition requires technology to supply sustainable carbon-based chemicals for hard-to-abate sectors such as long-distance transport and plastic manufacturing. These necessary hydrocarbon chemicals and fuels, responsible for 10-20% of the global greenhouse gas emissions, can be produced sustainably by the electrolysis of captured CO 2 using renewable electricity. Currently, the state-of-the-art CO 2 electrolyzers employ anion exchange membranes (AEMs) to facilitate the transport of hydroxide ions from the cathode to the anode. However, CO 2 is crossing the membrane as well, resulting in a loss of reactant and unfavourable anode conditions which necessitates the use of scarce anode materials. Bipolar membranes (BPMs) offer an alternative that addresses the problem of CO 2 crossover but still requires research to match the product selectivity of AEM-based systems. Our perspective, a collaboration between groups of David Vermaas, Tom Burdyny and Marc Koper, published in Nature Energy, assesses the potential of BPMs for CO 2 electrolysis by looking at CO 2 utilization, energy consumption, and strategies to improve the product selectivity. Abstract CO 2 electrolysis allows the sustainable production of carbon-based fuels and chemicals. However, state-of-the-art CO 2 electrolysers employing anion exchange membranes (AEMs) suffer from (bi)carbonate crossover, causing low CO 2 utilization and limiting anode choices to those based on precious metals. Here we argue that bipolar membranes (BPMs) could become the primary option for intrinsically stable and efficient CO 2 electrolysis without the use of scarce metals. Although both reverse- and forward-bias BPMs can inhibit CO 2 crossover, forward-bias BPMs fail to solve the rare-earth metals requirement at the anode. Unfortunately, reverse-bias BPM systems presently exhibit comparatively lower Faradaic efficiencies and higher cell voltages than AEM-based systems. We argue that these performance challenges can be overcome by focusing research on optimizing the catalyst, reaction microenvironment and alkali cation availability. Furthermore, BPMs can be improved by using thinner layers and a suitable water dissociation catalyst, thus alleviating core remaining challenges in CO 2 electrolysis to bring this technology to the industrial scale. Go to the publication Kostadin Petrov Christel Koopman David Vermaas Tom Burdyny Siddharta Subramanian

Understanding the learning process: machine learning and computational chemistry for hydrogenation

Machine learning is being mentioned all around, but can it be applied to modelling homogeneous catalysis? Researchers from TU Delft together with Janssen Pharmaceuticals published an extensive study accompanied by one of the biggest datasets on rhodium-catalyzed hydrogenation in Chemical Science trying to answer this question. Adarsh Kalikadien Evgeny Pidko For more than half a century, Rhodium-based catalysts have been used to produce chiral molecules via the asymmetric hydrogenation of prochiral olefins. The importance of this transformation was acknowledged by a Nobel prize given to Noyori and Knowles for their contributions in this field. Nowadays, asymmetric hydrogenation catalysts are widely used in the pharmaceutical industry, numerous chiral ligands are available to tackle a wide range of prochiral substrates and the reaction mechanism has been extensively studied. Consequently, one would expect that finding the best catalyst for the asymmetric hydrogenation of a new substrate is a trivial task. Unfortunately, this is not the case and a tedious and costly experimental screening is still needed. Adarsh Kalikadien and Evgeny Pidko from TU Delft together with experts in high-throughput-experimentation, data science and computational chemistry from Janssen Pharmaceutica in Belgium decided to investigate whether a well-trained machine could do the job. To their surprise, the machine was actually not able to learn as much as they expected. The idea was to set up a simple model reaction with a well-known rhodium catalyst. Based on the experimental data generated by the high-throughput experimentation team of Janssen, a computational dataset was built to which multiple machine learning models were applied. “We digitalized the 192 catalyst structures and represented them with features of various levels of complexity for the machine learning models,” says Kalikadien, a PhD student in Pidko’s group. "The interesting thing was that all the simpler models, including the random model, showed similar performances as the expensive variant, which intrigued us. It turned out to be an early indication that the machine was not really learning anything useful.” "One of our conclusions was, when tested more extensively, that for an out-of-domain modeling approach, it doesn't matter what representation you put in”. Nevertheless, although the team was not able to build an accurate model, their study was worth publishing. The publication process went relatively smoothly. “Although the first journal we contacted rejected our submission as too specialized, the high-impact journal Chemical Science saw the value of this work. Not many researchers are interested in just seeing the R2 value of a model and then having no possibility to use it, they are probably interested in an in-depth analysis like ours. So we were able to submit our data, code and even interactive figures there for everyone to use.” At the moment there is a big incentive for publishing negative data in order to help the community to assess the true added value of machine learning, since models trained on mainly positive results tend to become very biased. "We made everything open source," says Kalikadien. "Not only is all the data accessible, but we also offer the code including packages and instructions, so that anyone who is interested can do the same type of research." In this way, they have published one of the largest datasets of a certain type of hydrogenation reaction. What's next? "Our representation of the catalyst wasn't as meaningful for the machine learning models as we had hoped, so we are now looking for a representation that may be less simplified but still as simple as possible," says Kalikadien. "Creating a digital representation of your catalyst should not cost way more money than running the actual experiment, so we are trying to incorporate more information from the reaction mechanism into the model without making it too extensive. A more dynamic and hopefully more informative version of the representation." Read the publication Adarsh Kalikadien, Cecile Valsecchi, Robbert van Putten, Tor Maes, Mikko Muuronen, Natalia Dyubankova, Laurent Lefort and Evgeny A. Pidko

Start jij dit jaar je studie in Delft? ‘Discover your X’ tijdens de OWee en IP!

Wat tof, jij gaat aan de TU Delft studeren! Dan neem je vast ook deel aan de OWee of IP. Tijdens deze week ontdek je alles over de TU Delft, Delft zelf én natuurlijk wat er te doen is buiten je studie. Wil jij in Delft sporten? Jezelf creatief uiten? Helemaal ontspannen? Nieuwe mensen ontmoeten? Of af en toe een te gek evenement bijwonen? We zien jou graag tijdens de infomarkt én natuurlijk de Activity Market bij X! Op maandag 19 augustus staan we op de infomarkt in Delft. Hopelijk kunnen we daar alvast kennismaken! Avondprogramma Vanaf zondag 18 augustus t/m donderdag 22 augustus kun je alvast kennismaken met X door de evenementen uit ons rustige avondprogramma te bezoeken. Klik hier voor de agenda. Activity Market | 21 augustus Op woensdag 21 augustus vindt bij X de Activity Market plaats voor alle nieuwe en eerstejaars studenten. Je maakt hier kennis met de faciliteiten van X, de sport- & en cultuurverenigingen en alles wat X te bieden heeft op het gebied van sport, cultuur, kunst, lifestyle, games en eten en drinken. Volg ons alvast op Instagram voor een eerste sneak peek van X en de Activity Market! *Er worden foto's gemaakt op de Activity Market. Meer info over ons fotografiebeleid bij X vind je in de algemene voorwaarden. Beschikbaarheid X voor huidige X-leden X-leden kunnen nog steeds meedoen met het beschikbare aanbod, maar houd rekening met extra drukte. Zo kunnen de nieuwe studenten dit jaar ook een kijkje nemen in de Fitness op de Activity market tussen 11:00 en 15:00. Check de beschikbare lessen en waar ze komende week plaatsvinden in het rooster.

Opening van het academisch jaar 2024-2025 op 2 september

Vier met ons de opening van het academisch jaar! Je bent van harte uitgenodigd om op maandag 2 september aanwezig te zijn bij de opening van het Academisch Jaar 2024-2025 van de TU Delft. Met het thema 'Engineering the Future' kijken we dit jaar naar de bouwstenen van onze duurzame toekomst. Mobiliteit, voedselvoorziening, gezondheidszorg, energievoorziening en de manier waarop we grondstoffen gebruiken: ze zullen allemaal drastisch veranderen in deze eeuw. Aan de TU Delft kunnen we deze transities helpen vormgeven. Wat we hier doen kan invloed hebben op hoe bedrijven en eindgebruikers zich gedragen. Neem onze smartphones, waarvan het meeste goud en lithium na een paar jaar nog steeds op de vuilnisbelt belandt. Als je ze vanaf het begin anders ontwerpt, kun je uiteindelijk 'nul afval' bereiken - en dit is slechts één voorbeeld. Michiel Langezaal, alumnus en CEO van FastNed, het bedrijf dat een netwerk van snellaadpunten bouwt langs de snelwegen van Europa, is te gast. We praten met Dream Team Epoch, dat AI wil gebruiken om bij te dragen aan de Sustainable Development Goals van de Verenigde Naties. We verwelkomen ook Irek Roslon, alumnus en oprichter van SoundCell, de startup die een screening ontwikkelt waarmee artsen razendsnel de juiste antibiotica voor patiënten kunnen kiezen. Zij zullen het hebben over hun weg naar de toekomst, de bouwstenen die ze nodig hebben en de obstakels waar ze tegenaan lopen. Hoe ze hun eigen en onze toekomst vormgeven en met wie ze samenwerken. Muziek en dans maken ook deel uit van deze feestelijke bijeenkomst. En aan het eind heffen we met z'n allen het glas op het nieuwe academische jaar! Klik hier om je aan te melden.