Filter results

9533 resultaten

Volg de weg van het sediment

Stuart Pearson, coastal engineer bij TU Delft, ontvangt een NWO Veni-beurs. Hij gaat onderzoeken hoe sediment zich verplaatst. Op het niveau van een individuele zandkorrel. Zo hoopt hij een numeriek model te verifiëren waarmee precies de afgelegde route van het zand duidelijk wordt. Dit kan een uitkomst bieden om de kustbescherming op een natuurlijke manier te beïnvloeden en stimuleren. Duinen zijn belangrijke barrières om Nederland te beschermen tegen overstromingen. Om de kustlijn en haar beschermers in stand te houden, proberen coastal engineers het natuurlijke systeem te begrijpen. Zo kunnen ze nieuwe effectieve maatregelen ontwerpen om de kust te beschermen. S.G. (Stuart) Pearson S.G.Pearson@tudelft.nl Chaos De kust is voortdurend in beweging. Zand erodeert continu, waarna het elders weer ophoopt. Maar waar? Stuart Pearson zoomt in op een ongekend kleine schaal en wil erachter komen welke weg specifieke zandkorrels afleggen naar verschillende locaties aan de kust. Het is een enorme uitdaging om de korrels te volgen, en niet alleen omdat ze er allemaal hetzelfde uitzien. Golven en stromingen beïnvloeden het sedimenttransport in alle richtingen. "Het lijkt één grote chaotische puinhoop", zegt Pearson. "Ik beschouw kusten als een onderling verbonden netwerk van sedimentroutes, zoals een metrokaart die laat zien hoe stations met elkaar verbonden zijn. Deze connectiviteit onthult de verborgen structuur die ten grondslag ligt aan de chaotische sedimentroutes." Gekleurd zand in een groot zwembad Om deze routes te ontdekken werkt Pearson aan een experiment met een strand in een gecontroleerde laboratoriumsetting. Omdat het in de natuur bijna onmogelijk is om individuele korrels te onderscheiden, kwam hij op een kleurrijk idee. In een golfslagbassin ter grootte van een olympisch zwembad bij Deltares zal hij een strand aanleggen dat verdeeld is in vlakken met verschillende kleuren zand. "Ik heb een techniek ontwikkeld om een dataset te maken van de bewegingen van de korrels. Camera's zullen het bassin van bovenaf volgen en identificeren waar de verschillende kleuren terechtkomen, en vooral via welke weg ze daar komen." Numerieke modellen valideren Tijdens zijn PhD werkte Pearson aan een veldexperiment waarbij hij fluorescerend groen zand volgde bij de Waddeneilanden. "Het meten van de paden in ‘het wild’ is erg moeilijk", legt hij uit. "Ik kon zien waar een deel van het groene zand zich heen verplaatste, maar dat vertelt ons maar deels iets over het kustsysteem. Ik wil precies de routes van het systeem begrijpen, en dat kunnen we alleen in het lab doen.” Pearson ontwikkelde numerieke modellen om de meest plausibele routes te onderzoeken. Hij kijkt uit naar de nieuwe mogelijkheden dankzij deze veni-beurs: "Ik hoop met nieuwe laboratoriumexperimenten te bewijzen dat het model fysiek de juiste processen weergeeft. En daarnaast hoop ik dat andere onderzoekers hun modellen van sedimenttransport kunnen valideren aan de hand van mijn dataset."

Jos Zwanikken Education Fellow

De Delft Education Fellowship erkent en waardeert de inspanningen van docenten voor onderwijsinnovatie en vergroot de impact op onderwijsvernieuwing en -ontwikkeling. Docenten, Universitair Docenten, Universitair Hoofddocenten en Hoogleraren kunnen Education Fellow worden wanneer zij een zichtbare, substantiële en waardevolle bijdrage hebben geleverd aan het onderwijs van de TU Delft. De decaan van elke faculteit zal potentiële Fellows nomineren. Elk jaar benoemt TU Delft vier nieuwe Education Fellows. Sinds 2016 zijn 31 Education Fellows begonnen aan hun onderwijs fellow project. Een TU Delft Education Fellow wordt aangesteld voor een periode van twee jaar. Ze ontvangen een tweejarige subsidie van €25.000 per jaar voor onderwijsdoeleinden. Baanbrekende trajecten voor een diverse studentenpopulatie Dit project richt zich op het creëren van meerdere trajecten binnen afzonderlijke cursussen die leiden tot dezelfde leerdoelen, met als doel een diverse studentenpopulatie (in vele opzichten) te bedienen en een omgeving te koesteren die transdisciplinariteit kan ondersteunen en bevorderen. Het project bouwt voort op een succesvol experiment in Q2 van het afgelopen academiejaar, met de intentie om meerdere trajecten te implementeren binnen de natuurkundecursussen van het Nanobiologie-curriculum, gebaseerd op het niveau van onafhankelijkheid/verantwoordelijkheid en focus op vaardigheden. Dit zou de studenten een keuze bieden tussen twee niveaus van verantwoordelijkheid en hen voorzien van een veel breder scala aan cursusmaterialen, die slechts gedeeltelijk summatief zijn. In het bijzonder zou een selectie van de summatieve beoordelingen gekozen kunnen worden, waaronder opdrachten die de nadruk leggen op computationele vaardigheden, wiskundige nauwkeurigheid of praktische relevantie. Deze ontwikkelingen zullen sterk worden geïnformeerd en beoordeeld door onderwijsexperts en samenwerkingspartners.

Half Height Horizontal

Bipolar membranes for intrinsically stable and scalable CO2 electrolysis

The energy transition requires technology to supply sustainable carbon-based chemicals for hard-to-abate sectors such as long-distance transport and plastic manufacturing. These necessary hydrocarbon chemicals and fuels, responsible for 10-20% of the global greenhouse gas emissions, can be produced sustainably by the electrolysis of captured CO 2 using renewable electricity. Currently, the state-of-the-art CO 2 electrolyzers employ anion exchange membranes (AEMs) to facilitate the transport of hydroxide ions from the cathode to the anode. However, CO 2 is crossing the membrane as well, resulting in a loss of reactant and unfavourable anode conditions which necessitates the use of scarce anode materials. Bipolar membranes (BPMs) offer an alternative that addresses the problem of CO 2 crossover but still requires research to match the product selectivity of AEM-based systems. Our perspective, a collaboration between groups of David Vermaas, Tom Burdyny and Marc Koper, published in Nature Energy, assesses the potential of BPMs for CO 2 electrolysis by looking at CO 2 utilization, energy consumption, and strategies to improve the product selectivity. Abstract CO 2 electrolysis allows the sustainable production of carbon-based fuels and chemicals. However, state-of-the-art CO 2 electrolysers employing anion exchange membranes (AEMs) suffer from (bi)carbonate crossover, causing low CO 2 utilization and limiting anode choices to those based on precious metals. Here we argue that bipolar membranes (BPMs) could become the primary option for intrinsically stable and efficient CO 2 electrolysis without the use of scarce metals. Although both reverse- and forward-bias BPMs can inhibit CO 2 crossover, forward-bias BPMs fail to solve the rare-earth metals requirement at the anode. Unfortunately, reverse-bias BPM systems presently exhibit comparatively lower Faradaic efficiencies and higher cell voltages than AEM-based systems. We argue that these performance challenges can be overcome by focusing research on optimizing the catalyst, reaction microenvironment and alkali cation availability. Furthermore, BPMs can be improved by using thinner layers and a suitable water dissociation catalyst, thus alleviating core remaining challenges in CO 2 electrolysis to bring this technology to the industrial scale. Go to the publication Kostadin Petrov Christel Koopman David Vermaas Tom Burdyny Siddharta Subramanian

Understanding the learning process: machine learning and computational chemistry for hydrogenation

Machine learning is being mentioned all around, but can it be applied to modelling homogeneous catalysis? Researchers from TU Delft together with Janssen Pharmaceuticals published an extensive study accompanied by one of the biggest datasets on rhodium-catalyzed hydrogenation in Chemical Science trying to answer this question. Adarsh Kalikadien Evgeny Pidko For more than half a century, Rhodium-based catalysts have been used to produce chiral molecules via the asymmetric hydrogenation of prochiral olefins. The importance of this transformation was acknowledged by a Nobel prize given to Noyori and Knowles for their contributions in this field. Nowadays, asymmetric hydrogenation catalysts are widely used in the pharmaceutical industry, numerous chiral ligands are available to tackle a wide range of prochiral substrates and the reaction mechanism has been extensively studied. Consequently, one would expect that finding the best catalyst for the asymmetric hydrogenation of a new substrate is a trivial task. Unfortunately, this is not the case and a tedious and costly experimental screening is still needed. Adarsh Kalikadien and Evgeny Pidko from TU Delft together with experts in high-throughput-experimentation, data science and computational chemistry from Janssen Pharmaceutica in Belgium decided to investigate whether a well-trained machine could do the job. To their surprise, the machine was actually not able to learn as much as they expected. The idea was to set up a simple model reaction with a well-known rhodium catalyst. Based on the experimental data generated by the high-throughput experimentation team of Janssen, a computational dataset was built to which multiple machine learning models were applied. “We digitalized the 192 catalyst structures and represented them with features of various levels of complexity for the machine learning models,” says Kalikadien, a PhD student in Pidko’s group. "The interesting thing was that all the simpler models, including the random model, showed similar performances as the expensive variant, which intrigued us. It turned out to be an early indication that the machine was not really learning anything useful.” "One of our conclusions was, when tested more extensively, that for an out-of-domain modeling approach, it doesn't matter what representation you put in”. Nevertheless, although the team was not able to build an accurate model, their study was worth publishing. The publication process went relatively smoothly. “Although the first journal we contacted rejected our submission as too specialized, the high-impact journal Chemical Science saw the value of this work. Not many researchers are interested in just seeing the R2 value of a model and then having no possibility to use it, they are probably interested in an in-depth analysis like ours. So we were able to submit our data, code and even interactive figures there for everyone to use.” At the moment there is a big incentive for publishing negative data in order to help the community to assess the true added value of machine learning, since models trained on mainly positive results tend to become very biased. "We made everything open source," says Kalikadien. "Not only is all the data accessible, but we also offer the code including packages and instructions, so that anyone who is interested can do the same type of research." In this way, they have published one of the largest datasets of a certain type of hydrogenation reaction. What's next? "Our representation of the catalyst wasn't as meaningful for the machine learning models as we had hoped, so we are now looking for a representation that may be less simplified but still as simple as possible," says Kalikadien. "Creating a digital representation of your catalyst should not cost way more money than running the actual experiment, so we are trying to incorporate more information from the reaction mechanism into the model without making it too extensive. A more dynamic and hopefully more informative version of the representation." Read the publication Adarsh Kalikadien, Cecile Valsecchi, Robbert van Putten, Tor Maes, Mikko Muuronen, Natalia Dyubankova, Laurent Lefort and Evgeny A. Pidko

Start jij dit jaar je studie in Delft? ‘Discover your X’ tijdens de OWee en IP!

Wat tof, jij gaat aan de TU Delft studeren! Dan neem je vast ook deel aan de OWee of IP. Tijdens deze week ontdek je alles over de TU Delft, Delft zelf én natuurlijk wat er te doen is buiten je studie. Wil jij in Delft sporten? Jezelf creatief uiten? Helemaal ontspannen? Nieuwe mensen ontmoeten? Of af en toe een te gek evenement bijwonen? We zien jou graag tijdens de infomarkt én natuurlijk de Activity Market bij X! Op maandag 19 augustus staan we op de infomarkt in Delft. Hopelijk kunnen we daar alvast kennismaken! Avondprogramma Vanaf zondag 18 augustus t/m donderdag 22 augustus kun je alvast kennismaken met X door de evenementen uit ons rustige avondprogramma te bezoeken. Klik hier voor de agenda. Activity Market | 21 augustus Op woensdag 21 augustus vindt bij X de Activity Market plaats voor alle nieuwe en eerstejaars studenten. Je maakt hier kennis met de faciliteiten van X, de sport- & en cultuurverenigingen en alles wat X te bieden heeft op het gebied van sport, cultuur, kunst, lifestyle, games en eten en drinken. Volg ons alvast op Instagram voor een eerste sneak peek van X en de Activity Market! *Er worden foto's gemaakt op de Activity Market. Meer info over ons fotografiebeleid bij X vind je in de algemene voorwaarden. Beschikbaarheid X voor huidige X-leden X-leden kunnen nog steeds meedoen met het beschikbare aanbod, maar houd rekening met extra drukte. Zo kunnen de nieuwe studenten dit jaar ook een kijkje nemen in de Fitness op de Activity market tussen 11:00 en 15:00. Check de beschikbare lessen en waar ze komende week plaatsvinden in het rooster.

Opening van het academisch jaar 2024-2025 op 2 september

Vier met ons de opening van het academisch jaar! Je bent van harte uitgenodigd om op maandag 2 september aanwezig te zijn bij de opening van het Academisch Jaar 2024-2025 van de TU Delft. Met het thema 'Engineering the Future' kijken we dit jaar naar de bouwstenen van onze duurzame toekomst. Mobiliteit, voedselvoorziening, gezondheidszorg, energievoorziening en de manier waarop we grondstoffen gebruiken: ze zullen allemaal drastisch veranderen in deze eeuw. Aan de TU Delft kunnen we deze transities helpen vormgeven. Wat we hier doen kan invloed hebben op hoe bedrijven en eindgebruikers zich gedragen. Neem onze smartphones, waarvan het meeste goud en lithium na een paar jaar nog steeds op de vuilnisbelt belandt. Als je ze vanaf het begin anders ontwerpt, kun je uiteindelijk 'nul afval' bereiken - en dit is slechts één voorbeeld. Michiel Langezaal, alumnus en CEO van FastNed, het bedrijf dat een netwerk van snellaadpunten bouwt langs de snelwegen van Europa, is te gast. We praten met Dream Team Epoch, dat AI wil gebruiken om bij te dragen aan de Sustainable Development Goals van de Verenigde Naties. We verwelkomen ook Irek Roslon, alumnus en oprichter van SoundCell, de startup die een screening ontwikkelt waarmee artsen razendsnel de juiste antibiotica voor patiënten kunnen kiezen. Zij zullen het hebben over hun weg naar de toekomst, de bouwstenen die ze nodig hebben en de obstakels waar ze tegenaan lopen. Hoe ze hun eigen en onze toekomst vormgeven en met wie ze samenwerken. Muziek en dans maken ook deel uit van deze feestelijke bijeenkomst. En aan het eind heffen we met z'n allen het glas op het nieuwe academische jaar! Klik hier om je aan te melden.