“Stroming is prachtig,” zegt Marios Kotsonis, expert in vloeistofmechanica en universitair docent bij de Aerodynamics, Wind Energy & Propulsion groep. Hij wil stroming doorgronden, modelleren en manipuleren. Zijn windtunnel experiment, waarin hij met plasma actief de luchtstroming op de vleugel van een straalvliegtuig beïnvloedde, was een doorbraak. Zijn aanpak kan het brandstofverbruik met misschien wel vijftien procent verminderen. Het leverde hem een ERC-subsidie van €1.5m op.
Pijlvorm en het ontstaan van ‘crossflow’
Bij het doorklieven van de roerloze lucht op kruishoogte zijn de vleugels van een straalvliegtuig in een grenslaag gewikkeld met een dikte van ongeveer één centimeter. “De vleugels van vliegtuigen zijn typisch iets naar achteren gericht,” zegt Marios Kotsonis. “Hierdoor duurt het langer voordat de luchtstroom over deze vleugels supersonisch wordt, wat schokgolven veroorzaakt die de luchtweerstand vergroten. Het veroorzaakt echter ook het fenomeen ‘crossflow’.”
De term crossflow beschrijft een luchtstroming in de grenslaag. De richting van deze stroming is, verrassend genoeg, van de punt van de vleugel naar de romp toe. Bij een te hoge kruissnelheid wordt deze crossflow instabiel, er ontstaan dan wervels en turbulentie in de grenslaag. Deze omslag van een laminaire (gelaagde) stroming naar turbulentie verhoogt de luchtweerstand en het brandstofverbruik, met maximaal vijftien procent. “Ik wil deze omslag voorkomen,” zegt Kotsonis.
Herbruikbaar onderzoek
Al in de jaren ’70, ten tijde van de oliecrisis, deed men onderzoek naar het uitstellen van deze door crossflow gedomineerde omslag. Maar met het dalen van de olieprijzen daalde ook de interesse voor dit onderzoek. De huidige roep tot het verminderen van de CO2-uitstoot heeft het onderzoek nieuw leven ingeblazen. “Het verlagen van de door turbulentie veroorzaakte luchtweerstand kan met zogenaamde passieve oplossingen,” aldus Kotsonis. Dit betreft aanpassingen aan het oppervlak van de vleugels, vergelijkbaar aan het gebruik van shark-skin badpakken door zwemmers. “Maar,” zegt hij, “moderne vliegtuigen maken hier al optimaal gebruik van. Voor een grote stap voorwaarts in brandstofverbruik zijn drastische oplossingen nodig. Ik denk dat een actieve aanpak, met behulp van plasma actuatoren, deze drastische oplossing is.”
Plasma op de vleugel
Naast vast, vloeibaar en gasvormig is plasma de vierde fundamentele aggregatietoestand van materie. De zon bestaat geheel uit plasma en het komt kortstondig voor bij bliksem. “Voor mijn doel moet ik plasma kunstmatig creëren, met behulp van plasma actuatoren,” zegt Kotsonis. Het sterke elektrische veld tussen de elektrodes van een plasma actuator ioniseert de lucht en versnelt de geladen deeltjes in een bepaalde richting. Door botsingen van deze deeltjes met de neutrale moleculen in de lucht oefenen ze hierop een kracht uit. “Ik wil deze krachten gebruiken om de luchtstroming te veranderen, om het ontstaan en verval van instabiele wervels uit te stellen. Een beetje energie gebruiken om plasma op te wekken en daarmee veel brandstof te besparen,” zegt hij. Plasma actuatoren zijn eenvoudig te fabriceren, hebben geen bewegende delen en ze kunnen in de vleugels van straalvliegtuigen worden geïntegreerd.
Wervels beïnvloeden
Het meest eenvoudige gebruik van plasma actuatoren is het opwekken van een kracht tegen de richting van de crossflow in, langs de voorzijde van de vleugel. Dit was de aanpak bij zijn windtunnel experiment eind 2017. “Het experiment was,” volgens Kotsonis, “ontworpen als een ‘proof of concept’. Nu willen we onze techniek optimaliseren. Een van onze ideeën is om opzettelijk wervels te creëren die stabieler zijn, en daarmee voorkomen dat wervels ontstaan die omslaan in turbulentie. We willen ook spelen met de timing van de plasma-krachten, en met hun locatie op de vleugels.”
Rook en lasers
“Voor maximaal effect moeten we de vorming van wervels in de crossflow nauwkeurig begrijpen. Wanneer ontstaan ze, hoe groeien ze en waardoor slaan ze om naar turbulentie?” vraagt Kotsonis. In 2016 slaagde zijn groep er als eerste in om de luchtstroming in de grenslaag in detail te meten. Ze gebruikten hiervoor een bestaande tomografische beeldvormingstechniek. Hierbij belicht een laser zeer kort en snel achtereen rookdeeltjes in de luchtstroming. Vanuit meerdere richtingen leggen snelle camera’s de opeenvolgende posities van de rookdeeltjes vast, waaruit een algoritme vervolgens hun snelheid en richting berekent. “Erg hightech, alhoewel we de rookmachine gewoon bij een theaterwinkel gekocht hebben,” zegt hij.
ERC subsidie
“Mijn onderzoek is high-risk, high-gain,” zegt Kotsonis. Voortbordurend op zijn eigen werk en dat van zijn promovendi vroeg hij een ERC-subsidie aan. De European Research Council wees hem 1.5 miljoen euro aan onderzoeksgelden toe voor het verbeteren van de tomografische meettechniek en voor het optimaal manipuleren van crossflow met plasma. Volgens hem dient een groot deel van de subsidie voor de aanschaf van camera’s, andere optische hulpmiddelen en benodigdheden voor de plasma actuatoren. “Maar ik neem ook twee promovendi en twee postdocs aan.” Voor zijn experimenten heeft hij luchtstroming van zeer hoge kwaliteit nodig, vergelijkbaar met de omstandigheden op kruishoogte. “Gelukkig ben ik aan de TU Delft verbonden. Onze lage-turbulentie windtunnel stamt uit de jaren ’50, maar is nog steeds een top tien onderzoeksfaciliteit wat betreft laminaire luchtstromingen. Hij is bij uitstek geschikt voor mijn onderzoek.”