SESANS

Spin-Echo Small-Angle Neutron Scattering (SESANS) is a powerful technique for studying structures in materials over several length scales, ranging from nanometres to microns. By using the spin properties of neutrons, SESANS encodes structural information into the neutron polarisation, allowing researchers to measure spatial correlations in complex samples like food materials, polymers, biological systems, and porous materials. Unlike most scattering methods, SESANS directly provides real-space data, simplifying interpretation. Its non-destructive nature and ability to probe deep within materials make SESANS a valuable tool for advancing knowledge in physics, chemistry, and materials science.

For a review of the technique applications: Spin-echo small-angle neutron scattering for multiscale structure analysis of food materials 
W.G. Bouwman 
Food Structure 30 100235 (2021) https://doi.org/10.1016/j.foostr.2021.100235 


SESANS uses the principles of neutron spin echo to encode the scattering angle of the neutron irrespective of the collimation of the neutron beam, increasing the intensity of the neutron beam. The method is based on the Larmor precession of polarised neutrons in magnetic fields with inclined faces (the blue and red regions above indicate precession regions with opposite magnetic fields). This precession encodes the direction of the neutron trajectory. Without any scattering the precession yields a spin-echo with perfect polarisation. However, any scattering by the sample breaks the symmetry and decreases the polarisation of the beam. The measured polarisation is a Fourier transform of the scattering cross-section and thus closely related to the scattering length density correlation function, which facilitates data interpretation. The sensitivity can be tuned by varying the applied magnetic field B, the wavelength, the length of the set-up and the tilt angle of the interfaces. All these parameters can be combined into a single parameter, the spin-echo length, d, which is the length scale over which correlations in the sample are probed.

For the data-analysis: Analysis of SESANS data by numerical Hankel transform implementation in SasView
J.H. Bakker, A.L. Washington, S.R. Parnell, A.A. van Well, C.P. Pappas, W.G. Bouwman 
J. of Neutron Research 22 57-70 (2020) https://doi.org/10.3233/JNR-200154 

Analysis of spin-echo small-angle neutron scattering
R. Andersson, L.F. van Heijkamp, I.M. de Schepper, W.G. Bouwman
J. Appl. Cryst. 41, 868-885 (2008) http://dx.doi.org/10.1107/S0021889808026770 

For the technique: Spin-echo small angle neutron scattering in Delft,
 M.Th. Rekveldt, J. Plomp, W.G. Bouwman, W.H. Kraan, S.V. Grigoriev and M. Blaauw,
Review of scientific Instruments 76 033901 (2005) http://dx.doi.org/10.1063/1.1858579 

Applications

  • Food materials, such as emulsions, protein gels and dairy products
  • Polymers, such as composites and interpenetrating polymer networks
  • Powders, such as spray dried granules and their agglomerates
  • Colloids, for example to measure their interactions
  • Nuclear graphite

Few examples

1. Food materials

In food many length scales can be of importance, especially in the micrometre range. Since food is soft, the surface can be rather different from the bulk structure. This makes that there are many applications with food. Food comes in the shape of colloids (casein micelles), gels (proteins) and fibres (meat analogues). The measurements give directly an impression of the measured structures.

Spin-echo small-angle neutron scattering for multiscale structure analysis of food materials 
W.G. Bouwman 
Food Structure 30 100235 (2021) https://doi.org/10.1016/j.foostr.2021.100235 

2. Polymer medical devices

SESANS helped to improve the understanding of a new  therapeutic drug delivery material in patches on the skin. The patches consist of silicone with embedded glycerol droplets that act as reservoirs for active substances. The neutrons allow you to see the inside of compound polymer materials. The neutron scattering showed that all the water in the system was located in the glycerol droplets, thereby discarding the hypothesis that the water flows in channels created by the glycerol droplets within the silicone matrix. This knowledge is essential when designing patches to deliver therapeutic drugs in a controlled and targeted way to the skin.

The microscopic distribution of hydrophilic polymers in interpenetrating polymer networks (IPNs) of medical grade silicone 
G.N. Smith, E. Brok, M. Schmiele, K. Mortensen, W.G. Bouwman, C.P. Duif, T. Hassenkam, M. Alm, P. Thomsen, L. Arleth 
Polymer 224 123671 (2021) https://doi.org/10.1016/j.polymer.2021.123671 

3. Tuneable interactions between colloidal particles

Spin-Echo Small-Angle Neutron Scattering (SESANS) provided unique insights into the phase behaviour of colloidal systems with short-range attractions and intermediate-range repulsions. The repulsion between the charged colloidal particle was tuned by adding salt. The long range attraction was tuned by adding polymers giving rise to depletion attraction. SESANS probes how the interplay between repulsion and attraction  influence fluid-fluid separation, gelation, and structural inhomogeneities. This approach allows precise characterization of interaction potentials, enabling the rescaling of phase transitions with key parameters like the second virial coefficient and contact potential. The findings have broad implications for understanding and optimizing colloidal gels in industrial applications, from food to materials science, highlighting the interplay between attraction and repulsion in determining material properties.

The extended law of corresponding states when attractions meet repulsions 
K. van Gruijthuijsen, M. Obiols-Rabasa, P. Schurtenberger, W.G. Bouwman, A. Stradner 
Soft Matter 14 3704-3715 (2018) http://dx.doi.org/10.1039/C8SM00160J 

Please check out the info at the page User Office for Proposal Application, Contact Information and FAQ/QA.

  1. Revealing microscale bulk structures in polymer–carbon nanocomposites using spin-echo SANS 
    L.V. Tiihonen, M.P. Weir, A.J. Parnell, S.C. Boothroyd, D.W. Johnson,  R.M. Dalgliesh, M. Bleuel, C.P. Duif, W.G. Bouwman, R.L. Thompson, K.S. Coleman, N. Clarke, W.A. Hamilton, A.L. Washington, S.R. Parnell 
    Soft Matter 20, 8663- 8674 (2024)
    https://doi.org/10.1039/D4SM00578C 
     
  2. Simulations of spin-echo SANS (SESANS) using McStas on monochromatic and time of flight instrument 
    S.R. Parnell, F. Li, W. Stevense, W.G. Bouwman 
    Journal of Neutron Research 26, 35-46 (2024)
    https://doi.org/10.3233/JNR-240004 
     
  3. Simulations and concepts for a 2-D spin-echo modulated SANS (SEMSANS) instrument 
    S.R. Parnell, S. van den Berg, G. Bolderink, W.G. Bouwman 
    Journal of Physics: Conference Series, 2481, 012007 (2023)
    https://doi.org/10.1088/1742-6596/2481/1/012007 
     
  4. Time-of-flight spin-echo small-angle neutron scattering applied to biological cell nuclei 
    E.G. Iashina, W.G. Bouwman, C.P. Duif, R. Dalgliesh, E.Y. Varfolomeeva, R.A. Pantina, R.A. Kovalev, N.D. Federova, S.V. Grigoriev
    J. Appl. Cryst. 56 1512-1521 (2023)
    https://doi.org/10.1107/S1600576723007549 
     
  5. Radial spin echo small-angle neutron scattering method: concept and performance 
    E. Kadletz, W.G. Bouwman, C. Pappas
    J. Appl. Cryst. 55 1072-1084 (2022)
    https://doi.org/10.1107/S1600576722007245
     
  6. Spin-echo small-angle neutron scattering for multiscale structure analysis of food materials 
    W.G. Bouwman 
    Food Structure 30 100235 (2021)
    https://doi.org/10.1016/j.foostr.2021.100235 
     
  7. The microscopic distribution of hydrophilic polymers in interpenetrating polymer networks (IPNs) of medical grade silicone 
    G.N. Smith, E. Brok, M. Schmiele, K. Mortensen, W.G. Bouwman, C.P. Duif, T. Hassenkam, M. Alm, P. Thomsen, L. Arleth 
    Polymer 224 123671 (2021)
    https://doi.org/10.1016/j.polymer.2021.123671 
     
  8. Structural characterization of spray-dried microgranules by spin-echo small-angle neutron scattering 
    Priyanka Biswas, Debasis Sen, W.G. Bouwman 
    Powder Technology 378 680-684 (2021)
    https://doi.org/10.1016/j.powtec.2020.10.035 
     
  9. Mesoporous silica formation mechanisms probed using combined Spin-Echo Modulated Small Angle Neutron Scattering (SEMSANS) and Small Angle Neutron Scattering (SANS)
    J. Schmitt, J.J. Zeeuw, J. Plomp, W.G. Bouwman, A. Washington, R.M. Dalgliesh, C.P. Duif, M.A. Thijs, F. Li, R. Pynn, S.R. Parnell, K.J. Edler 
    ACS Applied Materials & Interfaces 12 28461-28473 (2020)
    https://doi.org/10.1021/acsami.0c03287 
     
  10. Small-angle neutron scattering (SANS) and spin-echo SANS measurements reveal the logarithmic fractal structure of the large-scale chromatin organization in HeLa nuclei 
    E.G. Iashina, M.V. Filatov, R.A. Pantina, E.Yu. Varfolomeeva, W.G. Bouwman, C.P. Duif, D. Honecker, V. Pipich, S.V. Grigoriev
    J. of Appl. Cryst. 52 844-853 (2019)
    https://doi.org/10.1107/S160057671900921X 
     
  11. Fibre formation in calcium caseinate influenced by solvent isotope effect and drying method – A neutron spectroscopy study
    B.Tian, V. Garcia Sakai, C.P. Pappas, A.J. van der Goot, W.G. Bouwman 
    Chemical Engineering Science 207 1270-1277 (2019)
    https://doi.org/10.1016/j.ces.2019.07.023 
     
  12. Systematically quantifying oil–water microemulsion structures using (spin-echo) small angle neutron scattering
    M. Mulder, X.X. Li, M.M. Nazim, R.M. Dalgliesh, B. Tian, M. Buijse, J. van Wunnik, W.G. Bouwman
    Colloids and Surfaces A 575 166-175 (2019)
    https://doi.org/10.1016/j.colsurfa.2019.04.045 
     
  13. Evolution of dispersion in the melt compounding of a model polymer nanocomposite system: A multi-scale study
    H. Gaspar, R. Santos, P. Teixeira, L. Hilliou, M.P. Weir, C.P. Duif, W.G. Bouwman, S.R. Parnell, S.M. King, J. A. Covas, G. Bernardo
    Polymer testing 76 109-118 (2019)
    https://doi.org/10.1016/j.polymertesting.2019.03.013 
     
  14. Visualizing the heterogeneous breakdown of a fractal microstructure during compaction by neutron dark-field imaging
    R. P. Harti, J. Valsecchi, P. Trtik, D. Mannes, C. Carminati, M. Strobl, J. Plomp, C. P. Duif, C. Grünzweig 
    Scientific Reports 8 17845 (2018)
    https://doi.org/10.1038/s41598-018-35845-y 
     
  15. Air bubbles in fibrous caseinate gels investigated by neutron refraction, X-ray tomography and refractive microscope
    B.Tian, Z. Wang, A.J. van der Goot, W.G. Bouwman 
    Food Hydrocolloids 83 287-295 (2018)
    https://doi.org/10.1016/j.foodhyd.2018.05.006 
     
  16. The extended law of corresponding states when attractions meet repulsions 
    K. van Gruijthuijsen, M. Obiols-Rabasa, P. Schurtenberger, W.G. Bouwman, A. Stradner 
    Soft Matter 14 3704-3715 (2018)
    http://dx.doi.org/10.1039/C8SM00160J 
     
  17. Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei 
    E.G. Iashina, E.V. Velichko, M.V. Filatov, W.G. Bouwman, C.P. Duif, A. Brulet, S.V. Grigoriev
    Physical Review E 96 012411 (2017)
    http://dx.doi.org/10.1103/PhysRevE.96.012411 
     
  18. Spin-echo small-angle neutron scattering study of the structure organization of the chromatin in biological cells 
    E.G. Iashina, W.G. Bouwman, C.P. Duif, M.V. Filatov, S.V. Grigoriev
    J. of Physics: Conf. Series 862 012010 (2017)
    http://dx.doi.org/10.1088/1742-6596/862/1/012010 
     
  19. Investigation of the closed porosity of functional ceramic materials by spin-echo small-angle neutron scattering
    H. Gaspar, P. Teixeira, R. Santos, L. Fernandes, L. Hilliou, M. P. Weir, A. J. Parnell, K. J. Abrams, C. J. Hill, W. G. Bouwman, S. R. Parnell, S. M. King, N. Clarke, J. A. Covas, G. Bernardo
    Macromolecules 50 3301-3312 (2017)
    http://dx.doi.org/10.1021/acs.macromol.6b02283 
     
  20. Investigation of the closed porosity of functional ceramic materials by spin-echo small-angle neutron scattering
    K. A. Pavlov, E. V. Velichko, V. N. Zabenkin, W. H. Kraan, C. P. Duif, W. G. Bouwman, Z. A. Mikhailovskaya, E. S. Buyanova, S. V. Grigoriev
    J. of Surface Investigation: X-ray, Synchrotron and Neutron Techniques 11 92-98 (2017)
    http://dx.doi.org/10.1134/S1027451017010189 
     
  21. High-strength bacterial cellulose–polyacrylamide hydrogels: Mesostructure anisotropy as studied by spin-echo small-angle neutron scattering and cryo-SEM
    E.V. Velichko, A.L. Buyanov, N.N. Saprykinac, Yu.O. Chetverikov, C.P. Duif, W.G. Bouwman, R.Yu. Smyslov
    European Polymer Journal 88 269-279 (2017)
    http://dx.doi.org/10.1016/j.eurpolymj.2017.01.034
     
  22. Characterization of the Stratified Morphology of Nanoparticle Agglomerates
    A. Fabre, T. Steur, W.G. Bouwman, M.T. Kreutzer, J.R. van Ommen 
    J. Phys. Chem. C 120 20446–20453 (2016)
    http://dx.doi.org/10.1021/acs.jpcc.6b07437 
     
  23. From nanopores to macropores: Fractal morphology of graphite
    Z. Zhou , W.G. Bouwman, H. Schut, S. Desert, J. Jestin, S. Hartmann, C. Pappas
    Carbon 96 541-547 (2016)
    http://dx.doi.org/10.1016/j.carbon.2015.09.069 
     
  24. Microstructure and rheology of globular protein gels in the presence of gelatin 
    Carsten Ersch, Marcel  Meinders, W.G. Bouwman, M. Nieuwland, E. van der Linden, P. Venema, A.H. Martin 
    Food Hydrocolloids 55 34-46 (2016) 
    http://dx.doi.org/10.1016/j.foodhyd.2015.09.030 
     
  25. Relating water holding of ovalbumin gels to aggregate structure
    M. Nieuwland, W.G. Bouwman, L. Pouvreau, A.H. Martin, H.H.J. de Jongh
    Food Hydrocolloids 52 87-94 (2016) 
    http://dx.doi.org/10.1016/j.foodhyd.2015.06.018 
     
  26. Characterizing length scales that determine the mechanical behavior of gels from crosslinked casein micelles
    M. Nieuwland, W.G. Bouwman, M.L. Bennink, E. Silletti, H.H.J. de Jongh
    Food Biophysics 10 416-427 (2015) 
    http://dx.doi.org/10.1007/s11483-015-9399-y 
     
  27. On characterization of anisotropic plant protein structures
    G.A. Krintiras, J. Göbel, W.G. Bouwman, A.J. van der Goot and G.D. Stefanidis
    Food & Function 5 3233-3240 (2014) 
    http://dx.doi.org/10.1039/C4FO00537F
     
  28. Multidimensional Nature of Fluidized Nanoparticle Agglomerates
    L. de Martin, W.G. Bouwman and J.R. van Ommen
    Langmuir 30 12696-12702 (2014) 
    http://dx.doi.org/10.1021/la502987e 
     
  29. Direct comparison of SESANS and SAXS to measure colloidal interactions
    K. van Gruijthuijsen, W.G. Bouwman, P. Schurtenberger and A. Stradner 
    EPL 106 28002 (2014) 
    http://dx.doi.org/10.1209/0295-5075/106/28002 
     
  30. DCD USANS and SESANS: a comparison of two neutron scattering techniques applicable for the study of large-scale structures 
    C. Rehm, J. Barker, W.G. Bouwman, R. Pynn 
    J. of Appl. Cryst. 64 354-364 (2013)
    http://dx.doi.org/10.1107/S0021889812050029 
     
  31. Using a grating analyser for SEMSANS investigations in the very small scattering angle range
    M. Strobl, F. Wieder, C.P. Duif, A. Hilger, N. Kardjilov, I. Manke, W.G. Bouwman 
    Physica B 407 4132-4135 (2012)
    http://dx.doi.org/10.1016/j.physb.2012.06.036 
     
  32. Combined SANS–SESANS, from 1 nm to 0.1 mm in one instrument
    W.G. Bouwman, C.P. Duif, J. Plomp, A. Wiedenmann, R. Gähler
    Physica B 406, 2357-2360 (2011)
    http://dx.doi.org/10.1016/j.physb.2010.11.069 
     
  33. Milk Gelation Studied with Small Angle Neutron Scattering Techniques and Monte Carlo Simulations
    L.F. van Heijkamp, I.M. de Schepper, M. Strobl, R.H. Tromp, J.R. Heringa, W.G. Bouwman
    J. Phys. Chem. A 114 2412-2426 (2010)
    http://dx.doi.org/10.1021/jp9067735
     
  34. Spatial modulation of a neutron beam by Larmor precession
    W.G. Bouwman, C.P. Duif, R. Gähler
    Physica B 404 2585-2589 (2009)
    http://dx.doi.org/10.1016/j.physb.2009.06.052
     
  35. Structure, anisotropy and fractals in compressed cohesive powders
    R. Andersson, W.G. Bouwman, J. Plomp, F.M. Mulder, H.G. Schimmel, I.M. De Schepper
    Powder Technology 189 6–13 (2009)
    http://dx.doi.org/10.1016/j.powtec.2008.05.010 
     
  36. Structure in cohesive powders studied with spin-echo small angle neutron scattering
    R. Andersson, W.G. Bouwman, S. Luding, I.M. de Schepper
    Granular Matter 10 407-414 (2008)
    http://dx.doi.org/10.1007/s10035-008-0109-z 
     
  37. Analysis of spin-echo small-angle neutron scattering
    R. Andersson, L.F. van Heijkamp, I.M. de Schepper, W.G. Bouwman
    J. Appl. Cryst. 41, 868-885 (2008)
    http://dx.doi.org/10.1107/S0021889808026770 
     
  38. Stress, strain, and bulk microstructure in a cohesive powder
    R. Andersson, W.G. Bouwman, S. Luding, I.M. de Schepper
    Physical Review E 77 051303 (2008)
    http://dx.doi.org/10.1103/PhysRevE.77.051303
     
  39. Real-space neutron scattering methods
    W.G. Bouwman, J. Plomp, V.O. de Haan, W.H. Kraan, A.A. van Well, K. Habicht, T. Keller, M.T. Rekveldt 
    Nuclear Instruments and Methods in Physics Research A 586 9–14 (2008)
    http://dx.doi.org/10.1016/j.nima.2007.11.045 
     
  40. Polarization optimization of spin-echo small angle scattering instruments
    M.Th.Rekveldt, C.P. Duif, W.H. Kraan, J. Plomp and W.G. Bouwman
    Rev. Sci. Instrum. 79, 015113 (2008)
    http://dx.doi.org/10.1063/1.2832350 
     
  41. Analysis of artificial silicon microstructures by ultra-small-angle and spin-echo small-angle neutron scattering
    M. Trinker, E. Jericha, W.G. Bouwman, R. Loidl, H. Rauch
    Nuclear Instruments and Methods in Physics Research A 579 1081–1089 (2007)
    http://dx.doi.org/10.1016/j.nima.2007.06.008 
     
  42. Probing the droplet cluster structure in acidified temperature cycled o/w emulsion gels by means of SESANS
    A. Bot, F.P. Duval, C.P. Duif and W.G. Bouwman
    International Journal of Food Science and Technology, 42, 746–752 (2007)
    http://dx.doi.org/10.1111/j.1365-2621.2007.01539.x 
     
  43. Neutron refraction by cylindrical metal wires
    J. Plomp, J.G. Barker, V.O. de Haan, W.G. Bouwman, A.A. van Well
    Nuclear Instruments and Methods in Physics Research A 574 324–329 (2007)
    http://dx.doi.org/10.1016/j.nima.2007.02.068 
     
  44. Effect of processing on droplet cluster structure in emulsion gels
    A. Bot, F.P. Duval,  and, W.G. Bouwman 
    Food Hydrocolloids 21, 844–854 (2007)
    http://dx.doi.org/10.1016/j.foodhyd.2006.09.012
     
  45. Phase-object approximation in small-angle neutron scattering experiments on silicon gratings
    V.O. de Haan, J. Plomp, W.G. Bouwman, M. Trinker, M.Th.Rekveldt, C.P. Duif, E. Jericha, H. Rauch and A.A. van Well
    J. Appl. Cryst.. 40, 151–157 (2007)
    http://dx.doi.org/10.1107/S0021889806047558 
     
  46. A novel application of neutron scattering on dairy products
    R.H. Tromp and, W.G. Bouwman 
    Food Hydrocolloids 21, 154-158 (2007)
    http://dx.doi.org/10.1016/j.foodhyd.2006.02.008 
     
  47. Light scattering measurements on microemulsions: Estimation of droplet sizes 
    C. Goddeeris, F. Cuppo, H. Reynaers, W.G. Bouwman and G. van den Mooter
    Int. J. of Pharmaceutics 312, 187-195 (2006)
    http://dx.doi.org/10.1016/j.ijpharm.2006.01.037 
     
  48. Spin-echo small-angle neutron scattering for magnetic samples
    S.V. Grigoriev, W.H. Kraan, M.Th. Rekveldt, T. Kruglov and W.G. Bouwman
    J. Appl. Cryst. 39, 252-258 (2006) 
    http://dx.doi.org/10.1107/S002188980600481X 
     
  49. Spin-echo small angle neutron scattering in Delft 
    M.Th. Rekveldt, J. Plomp, W.G. Bouwman, W.H. Kraan, S.V. Grigoriev and M. Blaauw
    Review of scientific Instruments 76 033901 (2005) 
    http://dx.doi.org/10.1063/1.1858579 
     
  50. Structure of hard-sphere colloid observed in real space by spin-echo small-angle neutron scattering 
    T. Kruglov, W.G. Bouwman, J. Plomp, M.Th. Rekveldt, G.J. Vroege, A.V. Petukhov and D.M.E. Thies-Weesie
    Physica B 357 452-455 (2005) 
    http://dx.doi.org/10.1016/j.physb.2004.12.032 
     
  51. Application of spin-echo small-angle neutron scattering to study the structure of charged colloids 
    T.V. Krouglov, W.G. Bouwman, I.M. de Schepper and M.Th. Rekveldt
    Physica B 356 218-222 (2005) 
    http://dx.doi.org/10.1016/j.physb.2004.10.080 
     
  52. SESANS with a monochromatic beam or with time-of-flight applied on colloidal systems
    W.G. Bouwman, W. Stam, T.V. Krouglov, J. Plomp, S.V. Grigoriev, W.H. Kraan and M.Th. Rekveldt
    Nuclear Instruments and Methods in Physics Research Section A529 16-21 (2004) 
    http://dx.doi.org/10.1016/j.nima.2004.04.150 
     
  53. SESANS studies of colloid phase transitions, dairy products and polymer fibres
    W.G. Bouwman, T.V. Krouglov, J. Plomp, S.V. Grigoriev, W.H. Kraan and M.Th. Rekveldt
    Physica B 350 140-146 (2004) 
    http://dx.doi.org/10.1016/j.physb.2004.04.013 
     
  54. Neutron refraction and transmission studied by SESANS
    M.Th. Rekveldt, W.G. Bouwman, W.H. Kraan and J. Plomp
    Physica B 350 E791-E794 (2004) 
    http://dx.doi.org/10.1016/j.physb.2004.03.206 
     
  55. Structural transitions of hard-sphere colloids studied by spin-echo small-angle neutron scattering
    T.Krouglov, W.G. Bouwman, J. Plomp, M.Th. Rekveldt, G.J. Vroege, A.V. Petukhov and D.M.E. Thies-Weesie
    J. Appl. Cryst. 36, 1417-1423 (2003) 
    http://dx.doi.org/10.1107/S0021889803021216 
     
  56. Spin-echo small-angle neutron scattering to study particle aggregates 
    T.Krouglov,W.H. Kraan, J. Plomp, M.Th. Rekveldt and W.G. Bouwman
    J. of Appl. Cryst. 36 816-819 (2003) 
    http://dx.doi.org/10.1107/S0021889803003984

Contact information

Instrument scientist

Wim bouwman

Instrument scientist

Chris Duif