3D-printing en origami
Image reproduced by permission of Shahram Janbaz from Materials Horizons, 2016 DOI: 10.1039/C6MH00195E
De nieuwste botprotheses rollen uit een 3D-printer. Precies op maat en met holtes waarin eigen bot groeit. Maar het kan nog beter, nog natuurlijker, denkt onderzoeker Amir Zadpoor. Met origami van biomateriaal.
De chirurg stapt even opzij. Een scanner zoeft zachtjes over en rond de patiënt op de operatietafel. In de hoek komt een apparaat tot leven, dat even later een plaatje met kleine en grote perforaties en ‘rafels’ uitspuugt. Het valt in een bakje met vloeistof. Langzaam zwelt en ontvouwt het zich en krijgt uiteindelijk precies de dimensies van het gat dat de chirurg zojuist maakte om een grote bottumor te verwijderen. Die klikt de prothese snel op de juiste plek.
Zo stelt Amir Zadpoor van de TU Delft zich de toekomst voor. “De botprothese bestaat uit een poreus, gelaagd materiaal dat probleemloos hecht aan het eigen bot,” voorspelt hij. “En het groeit snel vol met nieuw, gezond, stevig bot zodat het als twee druppels water op echt bot lijkt, en levenslang meegaat.”
Dat is nu nog toekomstmuziek, maar ook een logisch vervolg op wat er al kan in de kliniek: meer eigen bot behouden dankzij implantaten op maat uit de 3D-printer. Sander Dijkstra, orthopedisch chirurg in het LUMC, gebruikt soms al geprinte implantaten. “Jonge mensen met een tumor in het dijbeen kan ik nu vertellen dat ze wellicht weer kunnen rennen na de operatie.” Hij hoeft namelijk niet het hele kniegewricht weg te nemen zoals voorheen. “Laatst vertelde een patiënt dat hij weer hardloopt. Geweldig toch, daar doe je het voor.”
Poreus
De geprinte protheses die Dijkstra gebruikt, zijn nu gedeeltelijk poreus. Dat is mede dankzij het werk van materiaalkundige Zadpoor: “Met de 3D-printer kun je eenvoudig een poreuze prothese maken die toch stevig is. Zo’n implantaat heeft een veel groter oppervlakte. Dat betekent dat een antibacteriële laag op de buitenzijde veel effectiever is. Maar nog belangrijker: in die holtes kan eigen bot groeien. Dat zorgt voor betere hechting en extra stevigheid.”
En dat is welkom, want bijna een op de zeven implantaten moet opnieuw worden vervangen, weet Dijkstra. “Implantaten kunnen na verloop van tijd losraken én ze slijten. Zeker jonge patiënten lopen daarom kans dat hun prothese vervangen moet worden.”
Additively manufactured (3D printed) porous biomaterials aimed for bone tissue regeneration manufactured at the Additive Manufacturing Laboratory, TU Delft (Medical Delta © de Beeldredacteur).
Als 3D-geprinte protheses langer meegaan, waarom worden dan niet alle implantaten geprint? Zadpoor: “Een geprinte prothese is relatief duur. Bij het maken zijn nu nog veel specialisten nodig. Ik verwacht dat de kosten nog flink naar beneden zullen gaan de komende jaren. Dan zouden ook standaardimplantaten inderdaad uit de 3D-printer kunnen komen.” Toch verwacht hij nog niet snel 3D-geprinte heupprotheses op de markt. “Dat is zo’n geperfectioneerd product met weinig complicaties, dan moet het voordeel groot en overtuigend bewezen zijn. Dat vergt eerst langetermijnonderzoek.”
Schouderblad
Dijkstra plaatst op dit moment “eens in de vier maanden” een geprinte prothese. Want het is zeker geen standaardoperatie. De orthopeed is een van de pioniers. De 3D-printer staat ook nog niet in de operatiekamer, maar bij een gespecialiseerd bedrijf: Implantcast (Duitsland). Dijkstra: “Ik maak een botscan en bepaal welk gedeelte van het been echt weg moet. In een speciaal computerprogramma ontwerpen we dan een precies passend opzetstuk dat net boven de knie komt. Die koppelen we met een standaardpin aan het gezonde bovenste deel van het dijbeen.”
Het hele proces van eerste ontwerp tot operatie duurt nu zeven weken. Arts en ingenieur ontwerpen in nauw overleg over de beste oplossing voor die ene patiënt. Die krijgt in die tussentijd een chemokuur om mogelijke uitzaaiingen te bestrijden. De groep patiënten waar het om gaat -jonge mensen met ernstige bottumoren- is gelukkig klein. En de techniek komt vooralsnog alleen in beeld als een standaardprothese geen goede oplossing biedt. Dijkstra verving zo ook al eens een half schouderblad en een deel van een bekken - botten waarvoor geen standaardprotheses bestaan.
Dijkstra: “Een nieuw product betekent altijd een risico. Er kan een onverwacht nadeel opduiken, ook op lange termijn. Dat besef ik als arts terdege. We behandelen eerst de groep die er het meest baat bij 3D-geprinte protheses heeft. En volgen hen langdurig en nauwkeurig.” Van alle 3D-geprinte implantaten die Dijkstra gebruikt, wordt bijvoorbeeld ook een kopie geprint. In het laboratorium in Delft testen onderzoekers wat er misschien nog beter kan.
Origami
Om de geprinte prothese nog beter met het lichaam te laten vergroeien, wil materiaalkundige Zadpoor eigenlijk het ‘onmogelijke’ realiseren. Sinds een jaar of tien is duidelijk dat een bepaald oppervlaktepatroon op implantaten de aangroei van botcellen stimuleert. Waarschijnlijk lijkt dit patroon op het natuurlijk oppervlak van bot en nestelen botvormende cellen er daarom graag op. Zadpoor wil protheses maken waarbij dit patroon ook in de poriën zit.
Maar het gaat hier om een nanopatroon: ribbels ter grootte van een paar duizendste millimeter. Zadpoor: “Zo’n nanotopografie kun je maken met technieken uit de chipindustrie, maar alleen op vlakke oppervlakten. De techniek is dus eigenlijk niet te combineren met 3D-printen.” Met ‘zelfvouwende materialen’ wil de onderzoeker dit dilemma oplossen. “Denk aan origami”, begint Zadpoor zijn uitleg. “Daar begin je met een vlak stuk papier, maar het resultaat is een heel complex gevouwen vorm.”
Het idee is om vlakke structuren te printen en daar vervolgens het juiste nanopatroon op aan te brengen. Daarna volgt een vouwtruc. Het geprinte materiaal bestaat uit laagjes passieve en actieve polymeren. Die krimpen of zwellen wanneer de temperatuur stijgt, als ze in water belanden of als er licht op schijnt. Zadpoor: “Wij combineren ze zo dat vlakke vormen zichzelf kunnen uitvouwen of vanzelf oprollen.”
Self-folding origami
Miljoenen
De Europese Unie beloonde Zadpoors idee in 2015 een beurs van 1,5 miljoen euro (ERC-grant). De eerste zichtbare resultaten zijn er nu: een trap wordt onder water een DNA-streng en een raamwerk krimpt ineen tot ‘kippengaas’. Maar hoe leidt dit fraaie origamiwerk nu tot een poreus implantaat met nanopatroon waarmee Dijkstra zijn patiënten kan helpen? Zadpoor: “Wij laten nu de principes zien waarmee 2D-vormen zichzelf kunnen opvouwen tot 3D-structuren. Dat is fundamenteel onderzoek. Het is nu een kwestie van flink knutselen om er uiteindelijk echte implantaten met levenslange garantie mee te maken.”
Self-twisting of DNA-inspired constructs
Om dat einddoel te bereiken werkt Zadpoor samen met verschillende ziekenhuizen in en buiten de regio, met grote en kleine bedrijven en is deelnemer aan grote, internationale onderzoeksprojecten zoals het onlangs gestarte miljoenenproject PRosPERoS (PRinting PERsonalized orthopaedic implantS). Zijn lab in Delft is een belangrijk knooppunt in de ontwikkeling van nieuwe biomedische materialen. Toch had Zadpoor nu ook bij SpaceX of Boeing kunnen werken. Hij promoveerde in de Lucht- en Ruimtevaarttechniek. “Ik heb zes jaar geleden heel bewust de switch gemaakt van vliegtuigmaterialen naar biomaterialen. Want niets is uiteindelijk mooier dan te helpen om mensen beter te maken.”
Lees hier het persbericht.
Nederlandse media
- Door origami geïnspireerd botherstel
Nemo Kennislink, 25 oktober 2016 - Origami en 3D-printen voor zelfbouwende materialen
De Ingenieur, 22 oktober 2016 - TU Delft gebruikt origami voor 3d-objecten met oppervlaktepatroon
Bits & Chips, 24 oktober 2016 - TU Delft combineert 3D-printen met orgimami-technieken voor implantaten
ICT & Health, 1 november 2016 - 3D-printen en origami bij ontwikkeling zelfvouwende medische implantaten (video)
Engineersonline.nl, 23 oktober 2016 - Zelfvouwend origami-botweefsel uit de 3D-printer
BNR radio, 24 oktober 2016 - Zelfvouwende medische implantaten door 3D-printen en origami
Nano House, 30 oktober 2016 - Kennis van Nu, 2 maart 2017:
Internationaal
- 3-D printing and origami techniques combined in development of self-folding medical implants
Phys.org, 21 oktober 2016 - TU Delft researchers pioneer self-folding medical implants using 3D printing and origami techniques
3ders.org, 24 oktober 2016 - 3D Printing and Origami Could Yield Self-Folding Medical Implants
Engineering.com, 24 oktober 2016 - Self folding medical implants
3dprint.com - 3D PRINTING & ORIGAMI TECHNIQUES FOR MEDICAL IMPLANTS
3dprintersonlinestore.com, 2-11-2016 - 3d-printing and origami techniques combined development self folding medical implants
ECNmag.com - http://it.sohu.com/20161029/n471739916.shtml
- http://md.tech-ex.com/engineering/2016/47549.html
- Bio Focus: Nanopatterned self-folding origami may open up new possibilities in tissue engineering
MRS Bulletin, 28 november 2016 - Bio Focus: Nanopatterned self-folding origami may open up new possibilities in tissue engineering
MRS Bulletin, 7 november 2016 - Shape Memory Polymers to Create Origami-like Biomplants
EdgyLabs, 8 november 2016 - 3D printanje i origami tehnike u kombinaciji razvoja samosklopivih medicinskih implantata
Skala.ba, 6 november 2016 - TU Delft researchers develop self-twisting of DNA-inspired constructs (VIDEO)
4dpmmconference.com, 26 oktober 2016