Dissertations Wind Energy group
-
Acoustic Liners 46) Acoustic Emission 57) Acoustic wave propagation 48) Active flaps
11)
Active stall control
22)
Actuator cylinder
38)
Actuator disc
30)
Adaptive structures
Adhesive Joint 57) Actuator surfaces 47 Aeroacoustics
Aerodynamics
Aerodynamic Noise 56) Aeroelasticity
Aerofoil
Agent-based
17)
Airborne wind-energy
Aircraft community noise 48) Angle of attack
7)
Bayesian prediction
36)
BEM
Blade-vortex interaction noise 42) Built environment
5)
CAA 42) Certification 60) CFD
Composite optimization
24)
Composite structures 51) Control
Damage Detection 56) DBD plasma actuators
22)
Deep learning 48) Design optimisation
Detached eddy simulation
28)
Distributed control
25)
Ducted wind turbines
Dynamic inflow 30) Dynamic relaxation
44)
Dynamics
Efficiency
Energy production estimation 55) Engineering model
30)
Experimental aeroacoustics 50) Extreme
Fan boundary-layer ingestion noise 42) Fatigue
Flexible-Kite system 55) Flight control
39)
Floating offshore wind turbine
41)
Flow control
35)
Flow fields 58) Flow visualization
10)
Fluid power
27)
Flutter
26)
FSI 44), 45) FW-H 42) Gust model
HAWT
Hot wire anemometry
10)
Hybrid Darrieus-Savonius turbine 58) Hybrid Eulerian-Lagrangian model 58) Hydraulic networks
27)
Identification
26)
Importance sampling
29)
Infrared thermography 57) Initial design methods 51) Integral boundary layer
35)
Integrated design
13)
Isogeometric analysis
24)
Jet-Installation Noise 46) Kite control
25)
Kite-power systems
25)
Lattice-Boltzmann method 42), 43) Leading-edge erosion 56) Leadinge-edge inflatable wing 45) Leading-edge noise 43) Lidar turbulence measurement
12)
MDAO workflows
32)
Meteorology
20)
MEXICO rotor
28)
Monte Carlo methods
Multidisciplinary design
13)
Noise 54) North Sea 48) Numerical modeling 58) Offshore environment
Offshore wind farm design
Offshore wind power 48) Offshore wind turbine
Optimisation 54)
Panel method 44) Particle Image Velocimetry
Performance modelling and optimisation 55) Permeable Materials 46) Pitch control 53) Porous materials
Power performance 58) Power production characterisation 55) Probabilistic design
Propeller noise 42) Pumping kite-power system
25)
Quadrature rules
36)
Ram-air kite 44), 45) RANS 52) Ray acoustcs 48) Reliability
Renewable energy
9)
Robustness
39)
Rotor aerodynamics
Rotor experiment
10)
Safety 60) Semi-analytical models
33)
Smart rotor
11)
Social simulation
17)
Stall control
24)
Stall dynamics
35)
Strain gauge
10)
Structural design
31)
Structural dynamics
Sustainable development
9)
Systems engineering
32)
Test flight data analysis 55) Tip vortex instability
19)
Trailing-edge crack 56) Trailing-edge noise
Trailing-edge serrations 50) Transition modeling
Turbulence
Turbulence modeling 52) Upscaling
13)
Urban air mobility noise 48) VAWT
Vertical axis wind turbines 47) Vertical wind profile characterisation 55) Vibration analysis 57) Vortex generator
35)
Vortex ring state
41)
Vortex system 47) Vortex theory
7)
Vortex wake model
Wake 47) Wake deflections 47) Wake interactions 47) Wake model
Wake steering 53) Weather patterns 48) Wind energy
2), 3), 5), 6), 8), 9), 16), 17), 18), 20), 27), 29), 31), 41)
Wind energy & machine learning 52) Wind profiles
12)
Wind tunnel
Wind turbine
Wind turbine blade damage 52) Wind turbine loads
Wind turbine noise
33)
Wind turbine performance
20)
Yaw
10)
Dissertations
1) van Bussel, GJW. (1995). The aerodynamics of horizontal axis wind turbine rotors explored with asymptotic expansion methods.
http://resolver.tudelft.nl/uuid:3e7c9c17-d050-405e-89f3-f07d7fbcb51b
2) Kühn, MJ. (2001). Dynamics and design optimisation of offshore wind energy conversion systems.
http://resolver.tudelft.nl/uuid:adc3b032-3dde-4e32-84c3-7b8e181e5263
3) Cheng, PW. (2002). A reliability based design methodology for extreme responses of offshore wind turbines.
http://resolver.tudelft.nl/uuid:8ec622c5-daa3-4c4a-b9e5-a8cd6b97744e
4) van der Tempel, Jan (2006). Design of Support Structures for Offshore Wind Turbines.
http://resolver.tudelft.nl/uuid:512bb0d2-fddf-4e00-8d7c-e3e7e3827a6b
5) Mertens, S. (2006). Wind Energy in the built environment - concentrator effects of buildings. Multi-Science.
http://resolver.tudelft.nl/uuid:959694f4-6666-488a-8754-6c58124f4a10
6) Veldkamp, HF. (2006). Chances in Wind Energy: A probabilistic approach to wind turbine fatigue design. Duwind.
http://resolver.tudelft.nl/uuid:f4a46812-8ad7-44e7-a04b-3e43d4e67fe4
7) Sant, A. (2007). Improving BEM-based aerodynamic models in wind turbine design codes.
http://resolver.tudelft.nl/uuid:4d0e894c-d0ad-4983-9fa3-505a8c6869f1
8) Bierbooms, WAAM. (2009). Constrained stochastic simulation of wind gusts for wind turbine design.
http://resolver.tudelft.nl/uuid:f1d17514-77c0-4ed1-88ff-c46a1006f66d
9) Simao Ferreira, CJ. (2009). The near wake of the vawt - 2d and 3d views of the vawt aerodynamics.
http://resolver.tudelft.nl/uuid:ff6eaf63-ac57-492e-a680-c7a50cf5c1cf
10) Haans, W. (2011). Wind turbine aerodynamics in yaw - unravelling the measured rotor wake.
http://resolver.tudelft.nl/uuid:57f0cea4-4e05-47bf-8f53-fb1d6e36d39f
11) Barlas, A. (2011). Active aerodynamic load control on wind turbines - Aeroservoelastic modeling and wind tunnel experiments.
http://resolver.tudelft.nl/uuid:6918a4d0-2b75-44e6-bf33-2822d7c2d264
12) Sathe, AR. (2012). Influence of wind conditions on wind turbine loads and measurement of turbulence using lidars.
http://resolver.tudelft.nl/uuid:415fad86-a326-4898-a495-343b41ea033b
13) Ashuri, T. (2012). Beyond classical upscaling: Integrated aeroservoulastic design and optimization of large offshore wind turbines.
https://doi.org/10.4233/uuid:d10726c1-693c-408e-8505-dfca1810a59a
14) Schepers, JG. (2012). Engineering models in wind energy aerodynamics. Development, implementation and analysis using dedicated aerodynamic measurements.
https://doi.org/10.4233/uuid:92123c07-cc12-4945-973f-103bd744ec87
15) Micallef, D. (2012). 3D flows near a HAWT rotor: A dissection of blade and wake contributions.
https://doi.org/10.4233/uuid:ca471701-2817-4a36-9839-4545c1cceb45
16) Zaayer, MB. (2013). Great expectations for offshore wind turbines - Emulation of wind farm design to anticipate their value for customers.
https://doi.org/10.4233/uuid:fd689ba2-3c5f-4e7c-9ccd-55ddbf1679bd
17) Mast, EHM. (2014). Scenarios for offshore wind development in the Netherlands - An agent-based modelling approach.
https://doi.org/10.4233/uuid:fda3beda-4f43-4055-9e61-78610bfd14cb
18) Bernhammer, LO. (2015). Smart wind turbine: Analysis and autonomous flap.
https://doi.org/10.4233/uuid:b91d9697-d800-417b-bb7e-c5adb00c5e2b
19) Lignarolo, L. (2016). On the turbulent mixing in horizontal axis wind turbine wakes.
https://doi.org/10.4233/uuid:057fa33f-82a3-4139-beb8-53f184cd1d57
20) Holtslag, M. (2016). Far offshore wind conditions in scope of wind energy.
https://doi.org/10.4233/uuid:3c66f401-6cff-4273-aa49-df4274ba767f
21) Akay, B. (2016). The root flow of horizontal axis wind turbine blades: Experimental analysis and numerical validation.
https://doi.org/10.4233/uuid:2a3f9993-d406-42ee-9d64-57da3fbc0d12
22) Balbino Dos Santos Pereira, R. (2016). Active Stall Control of Horizontal Axis Wind Turbines: A dedicated study with emphasis on DBD plasma actuators.
https://doi.org/10.4233/uuid:e1462fab-b35c-4506-aa93-45d37eaf7872
23) Tescione, G. (2016). On the aerodynamics of a vertical axis wind turbine wake: An experimental and numerical study.
https://doi.org/10.4233/uuid:86ac7352-46b8-4c2d-9014-817472d80174
24) Ferede, E. (2016). Static aeroelastic optimization of composite wind turbine blades using variable stiffness laminates: Exploring twist coupled composite blades in stall control.
https://doi.org/10.4233/uuid:b4fe0ca4-b8c7-4e23-a2f1-247ac3b61aeb
25) Fechner, U. (2016). A Methodology for the Design of Kite-Power Control Systems.
https://doi.org/10.4233/uuid:85efaf4c-9dce-4111-bc91-7171b9da4b77
26) Navalkar, S. (2016). Iterative data-driven load control for flexible wind turbine rotors.
https://doi.org/10.4233/uuid:cf1e2110-0ce7-4cc1-956b-f221d5f7b605
27) Jarquin Laguna, A. (2017). Centralized electricity generation in offshore wind farms using hydraulic networks.
https://doi.org/10.4233/uuid:9a8812d1-d152-4a68-bd17-c88261f06481
28) Zhang, Y. (2017). Wind turbine rotor aerodynamics: The IEA MEXICO rotor explained.
https://doi.org/10.4233/uuid:f8112b0f-d697-4e5c-bbff-ea7eae5ab50c
29) Bos, R. (2017). Extreme gusts and their role in wind turbine design.
https://doi.org/10.4233/uuid:d6097e3a-1cdd-4845-a71c-90f469d28b7a
30) Yu, W. (2018). The wake of an unsteady actuator disc.
https://doi.org/10.4233/uuid:0e3a2402-585c-41b1-81cf-a35753076dfc
31) Hegberg, T. (2019). Fast Aeroelastic Analysis and Optimisation of Large Mixed Materials Wind Turbine Blades.
https://doi.org/10.4233/uuid:643ddf12-97d3-48a1-9742-b4dd22f16164
32) Sanchez Perez Moreno, S. (2019). A guideline for selecting MDAO workflows with an application in offshore wind energy.
https://doi.org/10.4233/uuid:ea1b4101-0e55-4abe-9539-ae5d81cf9f65
33) Küçükosman, C. (2019). Semi-analytical approaches for the prediction of the noise produced by ducted wind turbines.
https://doi.org/10.4233/uuid:b749675c-edb1-4355-ba09-bf46278077d0
34) De Oliveira Andrade, G. (2019). Aerodynamic Perspectives on Wind Energy Efficiency.
https://doi.org/10.4233/uuid:0981a422-4927-4d07-9e40-a99b7e93779b
35) Baldacchino, D. (2019). Vortex Generators for Flow Separation Control: Wind Turbine Applications.
https://doi.org/10.4233/uuid:99b15acb-e25e-4cd9-8541-1e4056c1baed
36) van den Bos, L. (2020). Quadrature Methods for Wind Turbine Load Calculations. Delft University of Technology.
https://doi.org/10.4233/uuid:0ed85902-051f-49a9-a99d-dad082fea758
37) Dighe, V. (2020). Ducted wind turbines revisited: A computational study.
https://doi.org/10.4233/uuid:56111690-faa8-4d98-9aba-d4a43fd5e160
38) De Tavernier, D. A. M. (2021). Aerodynamic advances in vertical-axis wind turbines.
https://doi.org/10.4233/uuid:7086f01f-28e7-4e1b-bf97-bb3e38dd22b9
39) Rapp, S. (2021). Robust Automatic Pumping Cycle Operation of Airborne Wind Energy Systems.
https://doi.org/10.4233/uuid:ab2adf33-ef5d-413c-b403-2cfb4f9b6bae
40) Rubio Carpio, A. (2021). Innovative Permeable Materials for Broadband Trailing-Edge Noise Mitigation.
https://doi.org/10.4233/uuid:fd3d84a7-c162-4cd4-8b19-bee53e00505f
41) Dong, J. (2021). A free wake vortex model for floating wind turbine aerodynamics.
https://doi.org/10.4233/uuid:48b0221c-534f-4bdd-8b0f-b529375ec94a
42) Romani, G. (2022). Computational aeroacoustics of rotor noise in novel aircraft configurations.
https://doi.org/10.4233/uuid:5d36b4de-8593-4f7e-bc92-a7ae175a0900
43) Teruna, C. (2022). Aerodynamic Noise Reduction with Porous Materials.
https://doi.org/10.4233/uuid:260cd874-c1ed-4155-bfdc-cf7fc3813ca6
44) Thedens, P. (2022). An integrated aero-structural model for ram-air kite simulations.
https://doi.org/10.4233/uuid:16e90401-62fc-4bc3-bf04-7a8c7bb0e2ee
45) Folkersma, MAM. (2022). Aeroelasticity of Membrane Kites: Airborne Wind Energy Applications
https://doi.org/10.4233/uuid:eae39f5a-49bc-438b-948f-b6ab51208068
46) Rego, Leandro (2022). Aeroacoustics of Jet-Surface Interaction and Passive Solutions for Mitigating Jet-Installation Noise
https://doi.org/10.4233/uuid:a50e3a9c-af3a-4e4f-836c-80f70c75847c
47) Huang, M. (2023). Wake and wind farm aerodynamics of vertical axis wind turbines.
https://doi.org/10.4233/uuid:14619578-e44f-45bb-a213-a9d179a54264
48) Cheneka, B.R. (2023). Wind Power Ramps: Characterisation, Forecasting and Future Projection
https://doi.org/10.4233/uuid:6548c067-4902-4ab3-ab7b-fdec61c3a8c9
49) Yunus, F. (2023). Methodologies and algorithms for sound propagation in complex environments with application to urban air mobility: A ray acoustics approach
https://doi.org/10.4233/uuid:72d10b7a-6790-41fc-9b15-26f9cccdb77f
50) Lima Pereira, L.T. (2023). Physics of broadband noise reduction by serrated trailing edges
https://doi.org/10.4233/uuid:a7b16311-35f5-4819-9d95-5ff1f8cae84f
51) Candade, A.A. (2023). Aero-structural Design and Optimisation of Tethered Composite Wings - Computational Methods for Initial Design of Airborne Wind Energy Systems
https://doi.org/10.4233/uuid:c706c198-d186-4297-8b03-32c80be1c6df
52) Steiner, J. (2023). Towards data-driven turbulence modeling for wind turbine wakes
https://doi.org/10.4233/uuid:72116acd-c5aa-4b3b-8fc7-52f1b2fa9958
53) LeBlanc, B.P. (2024). Dynamics of the Pitch-able VAWT - A Study of the Dynamics of the Vertical Axis Wind Turbine with Individual Pitch Control
https://doi.org/10.4233/uuid:6abb764c-a884-4da9-9f89-7140ee8b097b
54) Brandetti, L. (2024). Design for urban vertical-axis wind turbines: balancing performance and noise
https://doi.org/10.4233/uuid:812de44e-36fb-4e5d-acf7-973f38d965de
55) Schelbergen, M. (2024). Power to the airborne wind energy performance model - Estimating long-term energy production with an emphasis on pumping flexible-kite systems
Power to the airborne wind energy performance model | TU Delft Repository
56) Zhang, Y. (2024). Wind turbine blade damage detection using aerodynamic noise
https://doi.org/10.4233/uuid:a45acef5-5ef9-4797-be5e-08498566ec8a
57) Khoshmanesh, S. (2024). Assessment of different health monitoring techniques for damage characterization in a spar cap- shear web thick adhesive joint of a wind turbine blade
Assessment of different health monitoring techniques for damage characterization in a spar cap- shear web thick adhesive joint of a wind turbine blade | TU Delft Repository
58) Pan, J. (2024). Towards hybrid modeling of hybrid VAWT
Towards hybrid modeling of hybrid VAWT | TU Delft Repository
59) Chrysochoidis-Antsos, N. (2024). Integrating wind turbines with highway infrastructures
Integrating wind turbines with highway infrastructures | TU Delft Repository
60) Salma, V. (2024). Safety and Reliability of Commercial Airborne Wind Energy Systems
Safety and Reliability of Commercial Airborne Wind Energy Systems | TU Delft Repository