Dr. K. (Kunal) Masania
Dr. K. (Kunal) Masania
Profile
Expertise
Additive manufacturing Digitalisation
Hierarchical materials Bio-inspired materials Mechanical behaviour Sustainability
Expertise
His primary focus is to re-imagine how composites are made today, with an emphasis on structuring hierarchical materials in three dimensions using design inspiration from the natural world.
With the clear goal of producing structural details with complexities that are not possible any other way, his group that works on topics from material synthesis, additive manufacturing and digital fabrication of materials and their structures, to mechanics and mechanical behaviour.
Awards
o Shortlisted for Spark Award 2020, best invention at ETH Zürich.
o Top research team: 3D Printing Industry Awards shortlist, 2019.
o Best poster presentation by supervised student at SCCER Mobility Annual conference, ETH Zürich, 2018.
o Best presentation by supervised student at the British Society of Strain Measurements, Experimental Mechanics Conference at Imperial College London, UK, 2018.
o JEC Innovation Award for an automated production system for fully recyclable, complex bicycle components, 2016.
o MaP Career Seed Grant, ETH Foundation for promising young researchers to transition to academic careers, 2015.
o School of Engineering (FHNW) award for research excellence, 2014.
o Best Poster at the 36th annual meeting of the Adhesion Society, 2013.
o School of Engineering (FHNW) award for teaching excellence, 2013.
o Nominated for the Unwin PhD Prize, Viva 18th June 2010.
o Royal Academy of Engineering UK travel award, 2009.
o ACMA POLYCON and Composites '09 best technical paper, 2009.
o Defence Science and Technology Laboratory UK prize for best Master's Thesis, 2006.
Biography
Since Jan 2020, I am the head of a new research group in Aerospace Structures and Materials. Our primary focus is to re-imagine how composites are made today, with an emphasis on structuring hierarchical materials in three dimensions using design inspiration from the natural world.
We are an interdisciplinary group that works on topics from basic material synthesis, additive manufacturing and digital fabrication of materials and their structures, to mechanics and characterisation of their mechanical behaviour. Our research covers aspects that (a) are fundamental, (b) help further our understanding of the materials and structures around us and (c) leverage new technologies to realise sustainable composite materials with a broad range of applications whilst focusing on high quality science and engineering.
You can read about some of our latest work by checking Twitter, Google Scholar, Researchgate or our website.
As we build up our group and infrastructure, several highly ambitious and interdisciplinary projects are available! Please feel free to contact me for more information.
Biography
Twitter, Google Scholar, Researchgate, linkedin
Since January 2020, Prof. Kunal Masania is an Associate Professor at the Faculty of Aerospace Engineering.
After studying Mechanical Engineering at the University of Loughborough, Kunal carried out his PhD at Imperial College London on nanoscale toughening of thermosetting polymers, with ground-breaking work on size effects that has since been widely adopted by academia and industry.
At the University of Applied Sciences of Northwestern (FHNW) Switzerland he developed a variety of novel processing approaches for high-performance composites, such as rheo-kinetic control, compression RTM, highly reactive polymers, discontinuous composites and continuous natural-fibre thermoplastic composites. With numerous applications in aerospace, marine and automotive today, his work has been pushing the limits of how we fabricate composites.
Upon joining the Complex Materials Group at ETH Zürich, he became interested in bio-inspired approaches for 3D printing, biological materials and nacre-like composites and now looks forward to unlock the full potential of digital fabrication.
Research interests
We develop hierarchical bioinspired materials with contradicting properties (e.g. tough and strong, stiff and dissipative). Using 3D printing, we exploit directed- & self-assembly of natural or carbon-based materials across multiple length scales in order to study the role of anisotropy and porosity and apply these microstructural designs to large structures.
Expertise
Publications
-
2020-2-1
Three-dimensional printing of multicomponent glasses using phase-separating resins
David G. Moore / Lorenzo Barbera / Kunal Masania / André R. Studart
-
2020
A DNA-of-things storage architecture to create materials with embedded memory
Julian Koch / Silvan Gantenbein / Kunal Masania / Wendelin J. Stark / Yaniv Erlich / Robert N. Grass
-
2019-10-20
Fabrication of flax fibre-reinforced cellulose propionate thermoplastic composites
W. Woigk / C. A. Fuentes / J. Rion / D. Hegemann / A. W. van Vuure / E. Kramer / C. Dransfeld / K. Masania
-
2019-9-25
Delignified Wood-Polymer Interpenetrating Composites Exceeding the Rule of Mixtures
M. Frey / L. Schneider / K. Masania / T. Keplinger / I. Burgert
-
2018-9-13
Three-dimensional printing of hierarchical liquid-crystal-polymer structures
Silvan Gantenbein / Kunal Masania / Wilhelm Woigk / Jens P.W. Sesseg / Theo A. Tervoort / André R. Studart
-
Courses 2024
Courses 2023
Media
-
2024-01-11
Hoe levende materialen van algen het best koolstof kunnen opnemen
Appeared in: TU Delft
-
2023-12-04
It’s alive! New living materials developed at TU Delft
Appeared in: Delta
-
2023-01-31
Kunal Masania in de media 2023
Appeared in: TU Delft nieuws
-
2023-02-03
Virtual lab tour Sustainable Aviation at Aerospace Engineering TU Delft
Appeared in: YouTube
-
2021-02-04
Gemakkelijk(er) ademen met luchtvaart- en ruimtevaarttechnologie
Appeared in: TU Delft
Ancillary activities
-
2020-05-01 - 2026-05-01
Industry