Filter results

48109 results

[AN] Ivan Trapasso: Explorations in wave packet analysis

In this talk we provide a concise overview of the fundamental principles underlying harmonic analysis in phase space. The roots of this vibrant field of modern Fourier analysis are to be found at the crossroads of signal analysis, mathematical physics, representation theory and analysis of partial differential equations. The key idea is to exploit a dictionary of oscillating wave packets (or equivalently, the combined structure of translations and modulations or dilations) to investigate properties of functions, distributions and operators in terms of suitable companion phase space representations.

Addressing time and frequency/scale on the same level presents both advantages and challenges due to the uncertainty principle. In essence, time and frequency exhibit a somewhat dual nature as variables, hence the efforts to handle them concurrently are ultimately directed to keep track of the multifaceted manifestations of their entanglement. We will delve into these issues, whose origins date back to the foundations of quantum mechanics, and show how they continue to stimulate insightful research in analysis.

Lastly, we will offer a taste of applications of these techniques to some problems motivated by the current challenges of data science, mostly in order to convey the message that the principles of time-frequency analysis are ubiquitous, hence adopting a phase space perspective can provide a versatile framework to explore problems from pure and applied mathematics.

Applicants with a Dutch bachelor degree

Admission requirements All applicants have to fulfil the minimal TU Delft admission requirements . Direct admission (no specific requirements) Individuals holding one of the following Dutch degrees can be admitted to the master programme in Computer Science: Bachelor degree in Computer Science & Engineering (Technische Informatica (TI)) from Delft University of Technology, Eindhoven University of Technology or University of Twente Bachelor degree in Computer Science from a Dutch research university Bachelor degree in Electrical Engineering or Applied Mathematics from Delft University of Technology, Eindhoven University or University of Twente and a completed bridging programming in Computer Science & Engineering from TU Delft Bachelor degree Computer Science & Engineering from a Dutch HBO institution (TI) in combination with a completed bridging programme in Computer Science & Engineering from TU Delft. Individual admission (with a Dutch university bachelor degree) If your Dutch university bachelor degree does not give direct admission, you can apply for individual admission if you meet the academic background admission requirements . Please register for the master programme Computer Science via Studielink and send an email to MSc-EEMCS@tudelft.nl . You will receive instructions on which documents to supply for the assessment by the admission committee. Please note: We do not offer a bridging programme to applicants with a Dutch university bachelor degree from outside of the EEMCS faculty. Admission to the bridging programme in Computer Science and Engineering If you have a Dutch HBO bachelor degree in Computer Science and Engineering (Technische Informatica) or a WO bachelor degree in Data Science and Artificial Intelligence Technology you may be eligible for a bridging programme that after completion gives admission to our master programme in Computer Science. For more information please send an e-mail to MSc-EEMCS@tudelft.nl

Applicants with a Dutch bachelor degree

Admission requirements All applicants have to fulfil the minimal TU Delft admission requirements . Direct admission (no specific requirements) Individuals holding one of the following Dutch degrees can be admitted to the master programme in Computer Science: Bachelor degree in Computer Science & Engineering (Technische Informatica (TI)) from Delft University of Technology, Eindhoven University of Technology or University of Twente Bachelor degree in Computer Science from a Dutch research university Bachelor degree in Electrical Engineering or Applied Mathematics from Delft University of Technology, Eindhoven University or University of Twente and a completed bridging programming in Computer Science & Engineering from TU Delft Bachelor degree Computer Science & Engineering from a Dutch HBO institution (TI) in combination with a completed bridging programme in Computer Science & Engineering from TU Delft. Individual admission (with a Dutch university bachelor degree) If your Dutch university bachelor degree does not give direct admission, you can apply for individual admission if you meet the academic background admission requirements . Please register for the master programme Computer Science via Studielink and send an email to MSc-EEMCS@tudelft.nl . You will receive instructions on which documents to supply for the assessment by the admission committee. Please note: We do not offer a bridging programme to applicants with a Dutch university bachelor degree from outside of the EEMCS faculty. Admission to the bridging programme in Computer Science and Engineering If you have a Dutch HBO bachelor degree in Computer Science and Engineering (Technische Informatica) or a WO bachelor degree in Data Science and Artificial Intelligence Technology you may be eligible for a bridging programme that after completion gives admission to our master programme in Computer Science. For more information please send an e-mail to MSc-EEMCS@tudelft.nl

Half Height Horizontal

How storm surge barriers can keep the Netherlands safe and liveable

A safe and liveable delta, who doesn't go for that? Storm surge barriers play a crucial role in this. Yet there are many choices to be made in the short term to keep the storm surge barriers in a good condition, to eventually cope with rising sea levels in the longer term. A new project receives funding from NWO for five years to explore the best routes to a liveable delta. Storm surge barriers, like the Maeslantkering and the Oosterscheldekering are essential for protecting the Netherlands from high water coming in from the sea. How long will these imposing structures remain effective bearing in mind sea level rise, decay of the structures and an altering surrounding area. In the short term, decisions will have to be taken on maintenance, while in the longer term, adaptation or replacement should be considered. Linking storm surge barriers with the delta Within the SSB-Δ (storm surge barrier delta) project, a diverse consortium will investigate under what circumstances storm surge barriers can keep the Netherlands safe and liveable. The consortium consists of the universities of Delft, Utrecht, and Rotterdam; the universities of applied sciences of Rotterdam and Zeeland; knowledge institutes Deltares and TNO, as well as Rijkswaterstaat, water boards and companies. Bram van Prooijen, associate professor at TU Delft, will lead the research: “Decisions on flood defences are important for the entire delta. The link between the hinterland and the flood defences needs to be made properly. During this project, we will have the opportunity to bring different areas of expertise together and strengthen each other.” Long term perspective Therefore, the research is not only about the technical lifespan of the barriers. It will also clarify how the delta is going to change and how society thinks about it, resulting in a guideline to on how and when decisions need to be taken in the short term, with a long term perspective. Van Prooijen cites an example of car maintenance: “Think of replacing the engine block. This is very expensive maintenance, but sometimes necessary to keep the car running safely. But is it worth the investment if you plan to buy a new car next year? Or if you prefer to travel by train? Important choices will have to be made for storm surge barriers. We want to provide a strong basis for that.” Informed decisions The project will reveal the possible pathways to a liveable delta, and how storm surge barriers fit into that. Van Prooijen: “That offers clarity, to make quick and better-informed decisions. Many trials run for a long time, with the outcome of this research we can decide which trials specifically are the best option to proceed with.” Future experts One of the storm surge barriers involved in the research is the Maeslantkering. This barrier is expected to last another fifty years or so. That may seem far away, Van Prooijen reasons, “but we need to train the experts who will decide on this now. Those are probably the PhD students on this project.”

Researchers hand over Position Paper to Tweede Kamer

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.