Thermodynamics for processes and systems 1
Learning objectives
The PhD candidate is able to evaluate the thermodynamic performance of various basic processes by applying the exergy concept and to identify ways to reduce exergy losses in frequently applied basic processes.
More specifically, the PhD candidate must be able to:
1. Determine the exergy values, including chemical exergy, of fluid mixtures and fuels
2. Determine exergy losses and exergy efficiencies of basic processes like fuel conversion (combustion, gasification, reforming), heat transfer, expansion turbines and compression and to present exergy losses in property diagrams and value diagrams
Contents
1. Short recapitulation of the fundamentals of engineering thermodynamics: first law, energy balance of closed and open systems, second law, entropy and irreversibility.
2. Specific thermodynamic properties of fluids: properties of water and steam, properties of ideal gas.
3. Extended definition of exergy and environment: Chemical exergy, Exergy of fuels, Exergy efficiencies.
4. Value diagrams: Application for heat exchanging equipment and combustion processes.
5. Exergy losses of basic processes: fuel conversion, heat transfer, turbines, compressors.
Required background
Undergraduate courses in Thermodynamics (TBC)
Course material
Slides, course notes, Fundamentals of Engineering Thermodynamics, 7e Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey
GS credits:
Ects 1.5 /5 GS
Lecturer(s): Dr. Aravind Aravind and Ir. Theo Woudstra
Course dates:
To be announced in the beginning of the year 2020
Group sizes:
Max 25 participants
Assessment:
Written exam
Contact:
PhD candidates working on process and energy systems wishing to participate should contact Dr. Aravind Aravind by email (A.PurushothamanVellayani@tudelft.nl) at least two weeks before the start of the course.