Biotechnology

Innovation is crucial to fulfil the potential of industrial biotechnology for sustainable production of fuels, chemicals, materials, food and feed. Similarly, scientific and technological advances in environmental biotechnology are needed to enable novel approaches to water purification, and ‘waste-to-product’ processes thus contributing to a circular economy. Increased fundamental knowledge encompassing enzymes, microorganisms and processes are essential for progress in this field. The Department of Biotechnology covers this research area and, based on new insights, selects, designs and tests new biobased catalysts, micro-organisms, and processes.

The department encompasses five research sections:

09 November 2023

Are Sustainability and Safety Incompatible?

In the world of biotechnology, safety and sustainability might sometimes be at odds. When conflicts arise, decision-makers must carefully weigh the trade-offs, addressing potential risks and ethical concerns in order to make informed choices. According to two TU Delft professors, safety and sustainability need to go hand in hand to ensure that biotechnological processes and products are developed and managed responsibly. text Heather Montague Risks and responsibilities With the rise of the circular economy, finding ways to use waste for other purposes has become a hot topic. But there are risks involved, says Lotte Asveld , Associate Professor of Ethics & Biotechnology at TU Delft. “People have high standards when it comes to using wastes as resources. Anything that comes out of the sewer doesn’t feel very comfortable to have in your house.” In that sense, she sees a clash between sustainability and safety but also believes they should be combined. “We can’t make everything 100% safe, but we should look towards what risks people find acceptable.” Societal acceptance of using waste as a resource requires that regulations and responsibilities be well aligned. We also need to reevaluate the way we learn about risks, according to Asveld. She notes that biotechnology is strictly regulated, but in the chemical industry, companies themselves are responsible for learning about and identifying risks. “As new risky substances keep emerging, what needs to happen in the innovation ecosystem to make sure that these responsibilities have a place?” Learning about these risks is not always an inherent part of a company’s structure and that needs to change. “My objective is to make sure that safety is something that we talk about, that we don’t take for granted, that we discuss amongst each other; what does it mean, how can we achieve it, and how do we see our responsibility to society and achieving safety?” The future is green The term ‘green chemistry’ was introduced some thirty years ago, according to Ulf Hanefeld , Professor of Biotechnology at TU Delft’s Faculty of Applied Sciences. The aim is to enable society to make what is currently made, or alternatives, in a sustainable and safe manner. “So how can I make the compounds that we as a society think we need in a sustainable manner, starting from readily available materials, performing reactions that are inherently safe,” says Hanefeld. “For me, safety and sustainability go hand in hand.” There are advantages and opportunities that come along with green chemistry. If you take all the starting materials, make only products out of it and don’t generate any waste, that results in higher profit. And there is also an opportunity to develop a new chemistry. “Consider that our current chemistry always starts from petrochemicals, which are very low in terms of functionality,” Hanefeld explains. “If you use sustainable materials like sugars or lignin or plant waste, that is always highly functionalised. Because we have a new type of starter material, we’re doing it all new, and it is a chance to develop it safe from the start. Download article Download article

News

05 July 2018

Delft Advanced Biorenewables attracts capital and commercial director for scale-up phase

Serial entrepreneur Jan Willem Klerkx participates and joins start-up Delft Advanced Biorenewables (DAB), that developed a unique technology to produce biochemicals and biofuels in a cheaper and more efficient way. Klerkx becomes shareholder and joins the management. Details about the investment are not published. DAB , a spin-off of TU Delft, has gone through an extensive development trajectory in the last four years and is now in the phase of scaling up, in which Klerkx will play an important role. Using his knowledge and experience, the serial entrepreneur regularly joins technology start-ups to strengthen them in the field of management and sales. Previously, he invested in the start-up Scyfer (artificial intelligence), which was taken over by Qualcomm last year. With DAB, Klerkx now focuses on sustainable energy. "I had the idea for a while to spend my time and energy on supporting the circular economy. What DAB does - reducing the production costs of biofuels and biochemicals - is an important contribution to this. The technology and scientific team of DAB are world-class. I look forward to making the company stronger commercially with my experience." DAB Corporate Movie from DelftAB on Vimeo . Director of DAB, Kirsten Steinbusch, is pleased with the arrival of Klerkx. "Jan Willem has proven to be able to make a difference in knowledge based start-ups. We can use his commercial skills and strategy to enable DAB to grow further." TU Delft also has an interest in DAB through ‘ Delft Enterprises ’. Director Paul Althuis: "TU Delft is committed to work on a sustainable future. That is why it is important that our scientists’ groundbreaking research also reaches the market. That is why we invest in promising technological innovations, such as those of DAB." DAB was founded in 2012 with the conviction that in the near future there will be an increasing demand for advanced fuels and chemicals that are produced from biomass. To make biobased an attractive alternative, the production process should become cost effective and scalable. DAB has developed a unique separation and reactor technology to convert organic material into biofuels and biological chemicals in a single process step, resulting in both lower costs and simplified production. DAB works closely with TU Delft and the Bioprocess Pilot Facility (BPF) to scale up the technology. The joint research project is subsidized by the Ministry of Economic Affairs, national regulations for Ministry of Economic Affairs subsidies and the ‘Top Sector Energie’ carried out by the Dutch Enterprise Agency (RVO). For more information, please contact Kirsten Steinbusch - Managing Director DAB