Biotechnology

Innovation is crucial to fulfil the potential of industrial biotechnology for sustainable production of fuels, chemicals, materials, food and feed. Similarly, scientific and technological advances in environmental biotechnology are needed to enable novel approaches to water purification, and ‘waste-to-product’ processes thus contributing to a circular economy. Increased fundamental knowledge encompassing enzymes, microorganisms and processes are essential for progress in this field. The Department of Biotechnology covers this research area and, based on new insights, selects, designs and tests new biobased catalysts, micro-organisms, and processes.

The department encompasses five research sections:

20 March 2024

Jack Pronk receives the 2024 Novozymes Prize

The Novo Nordisk Foundation proudly announces Professor Jack Pronk as the recipient of the 2024 Novozymes Prize for his groundbreaking contributions to industrial biotechnology. His transformative research in yeast physiology and metabolic engineering has not only revolutionised biofuel and chemical production but has also provided critical solutions to longstanding challenges in sustainable bioprocesses. At the turn of the century, as the world faced the looming climate crisis spurred by fossil-fuel consumption, the importance of alternative fuels became increasingly apparent. Bioethanol emerged as a promising solution, yet its production from non-food sources posed significant challenges. “It had been a dream for decades to establish a biobased economy utilising microorganisms. An example is producing fuel ethanol from sugar using yeast, which efficiently converts glucose into ethanol. However, this approach was controversial because unlimited expansion could lead to competition with food production,” explains Jack Pronk, Professor and Head of the Department of Biotechnology at Delft University of Technology (TU Delft) in the Netherlands. Although yeast could efficiently turn sugars from fruits and other edible sources into bioethanol, the metabolism of sugars from agricultural waste streams posed a critical hurdle for economical bioethanol conversion, since traditional yeast strains struggled to utilise pentose sugars, which are abundant in agricultural residues. In a groundbreaking collaboration with fellow microbiologist Huub Op den Camp from Radboud University Nijmegen, Jack Pronk discovered a potential solution in an unlikely source – the anaerobic fungus Piromyces sp. strain E2, isolated from the faeces of an Indian elephant. This fungus harboured a xylose isomerase gene that held the key to unlocking the pentose challenge. “The result initiated years of research, increasingly involving collaboration with the company DSM,” states Jack Pronk. “Through this process, baker’s yeast was adapted for processing pentose sugars from agricultural waste streams.” “Jack Pronk is one of Europe’s foremost leaders in innovative, sustainable biotechnology using microbes for environmentally friendly conversion of waste streams into biofuels and fine chemicals. The fundamental research and the knowledge generated about the functioning of yeast and fungi from Jack Pronk’s laboratory has been the basis for a wide range of commercial applications with clear societal impact, as demonstrated by their full-scale industrial implementation. The Novo Nordisk Foundation is proud to recognise Jack Pronk’s excellence in research with the 2024 Novozymes Prize,” says Professor Mads Krogsgaard Thomsen, CEO of the Novo Nordisk Foundation. By 2010, the modified yeast could efficiently convert the most important sugars from plant residues into ethanol, paving the way for sustainable biofuel production technologies. Despite setbacks in large-scale implementation, Jack Pronk believes that the production of ethanol from agricultural residues will make a comeback. Ethanol is not only useful as a transport fuel but also as a precursor for compounds ranging from ethylene to aviation fuel. “I do see a future for ethanol, produced by low-emission technologies, as a generic feedstock for production of food protein, pharmaceuticals and fine chemicals. There is huge potential for its production from agricultural residues. I am convinced that genetically modified microorganisms, be they yeasts, bacteria or fungi, will enable cost-effective and sustainable ethanol production from these feedstocks.” The 2024 Novozymes Prize therefore celebrates Professor Jack Pronk’s exceptional contributions to industrial biotechnology, highlighting his innovative solutions to longstanding challenges and his enduring commitment to sustainable bioprocesses. His work exemplifies the transformative potential of biotechnology in addressing global challenges and building a more sustainable future. “The advances Jack Pronk has made, especially with using yeast, are based on exceptionally deep knowledge of physiology and metabolism, rooted in rigorous fundamental research. His superb understanding of how a yeast cell operates has directly translated into Jack being able to exploit yeast cells as industrial-level factories for producing fuels and chemicals. He clearly is a world leader in industrial biotechnology and fermentation science, with a specific focus on developing sustainable bioprocesses that help to reduce waste streams and carbon footprint,” concludes Professor Detlef Weigel, Chair of the Committee on the Novozymes Prize. About Professor Jack Pronk 1986 MSc in biology (cum laude), Leiden University 1991 PhD in microbial physiology, TU Delft 1991-1999 Assistant Professor, TU Delft 1999- Professor of Industrial Microbiology, TU Delft 2002-2013 Co-founder and Scientific Director, Kluyver Centre for Genomics of Industrial Fermentation 2015 Fellow of the American Society of Microbiology 2015 Professor of Excellence Award, TU Delft 2018 International Metabolic Engineering Award 2019- Head of the Department of Biotechnology, TU Delft 2020 Member of the Royal Netherlands Academy of Sciences 2021 Knight in the Order of the Netherlands Lion About the Novozymes Prize The Novozymes Prize recognises outstanding research or technology contributions that benefit the development of biotechnological science for innovative solutions. The Prize is awarded annually and is intended to further raise awareness of basic and applied biotechnology research. The Prize is accompanied by DKK 5 million (€672,000) and comprises a DKK 4.5 million (€605,000) research grant and a personal award of DKK 0.5 million (€67,000). The Foundation will award an additional DKK 0.5 million for hosting an international symposium within the recipient’s field(s) of research. Further information TU Delft: Charlotte de Kort, Communications Manager TNW, +31 (0)6 140 15 135, c.g.w.dekort@tudelft.nl Novo Nordisk Foundation: Christian Mostrup, Senior Lead, Corporate Affairs, +45 3067 4805, cims@novo.dk Prof. Jack Pronk Head of department / Full professor +31 15 2783214 j.t.pronk@tudelft.nl Room number: B58.C1.080

News

15 December 2020

Five 20k grants for cross-campus bioengineering research projects

In response to the first call for bioengineering research proposals, Delft Bioengineering Institute received a stunning amount of thirteen interfacultary proposals. After a thorough peer review process, eight very good to excellent proposals surfaced. From these, MT BEI has selected the five winning projects listed below. We want to thank all BEI PIs for submitting proposals and all reviewers for their efforts, knowing they were all quite busy already. We hope that 2021 will see the start of a second five-year term for the institute, so we can continue to support these promising cross-campus collaborations! >> Biochars for reducing methane emissions Methane has a high global warming potential, and landfill is one of the largest contributors of global human-caused methane emissions. Methane treatment using engineered microbial oxidation systems is one of the ways to reduce these emissions. Biochars, carbon-rich materials produced from sources such as municipal solid wastes, wastewater sludge and wood, have gained interest in the waste management industry as media to enhance control of landfill gas emissions. In this project, led by Julia Gebert of Geoscience & Engineering (CiTG), BEI PIs of four TU Delft faculties team up to investigate the potential of biochars for enhancing microbial methane oxidation in biofilters. Project title: Effects of biochar on the performance of microbial CH4 oxidation in biofilters to reduce landfill gas emissions. BEI PIs: Julia Gebert (CiTG/GSE), Wiebren de Jong (3mE/P&E), Aljoscha Wahl (TNW/BT), Martin Pabst (TNW/BT), Thomas Abeel (EWI/Bioinformatics) >> Regenerating neuronal circuits using ultrasound People suffering from neurodegenerative disorders such as Alzheimer’s, Parkinson’s Disease and Multiple Sclerosis, have impaired neuronal circuits. Generation of new neuronal circuits by using a patient’s own stem cells may prove helpful in treating the disease. One of the difficulties in inducing neurons from stem cells, is the low efficiency rate we are able to achieve so far. In this project, BEI PIs Tiago Costa of Microelectronics (EWI) and Dimphna Meijer of Bionanoscience (TNW) join forces to explore the use of ultrasound for effectively building active neuronal networks from stem cells. Project title: SoundCircuit: Regeneration of neuronal circuits using ultrasound BEI PIs: Tiago Costa (EWI/ME), Dimphna Meijer (TNW/BN) >> Medical implants to investigate cell mechanobiology In order to study the cell’s behaviour and differentiation, we need to be able to measure the mechanical, electrical and biochemical signals that are dynamically transmitted throughout the cells. This requires the creation of biomaterial models equipped with different sensor types. In this project, BEI PIs Mohammad J. Mirzaali of Biomechanical Engineering (3mE) and Massimo Mastrangeli of Microelectronics (EWI) will team up to design, fabricate and test the proof-of-concept for medical implants equipped with force sensors that can reach a sensitivity level of one micronewton, so the mechanobiology of cells can be effectively investigated. Project title: Sixth Sense Biomaterials BEI PIs: Mohammad J. Mirzaali (3mE/BM), Massimo Mastrangeli (EWI/ME) >> Advanced cellular nanoimaging Structural biology has been essential in understanding the cell. Studying the dynamics of biological systems requires advanced imaging tools, particularly those that can bring both high spatial and temporal resolutions. In this project, BEI PIs Chirlmin Joo of Bionanoscience (TNW) and Carlas Smith of Delft Centre for Systems and Control (3mE) will join forces to develop a novel methodology for fast absolute FRET distance measurement, taking advantage of smFRET (fast but biased molecular dynamics) and localization microscopy (unbiased but static localization). Project title: New structural biology by integrating nanoscopy and single-molecule Forster resonance energy transfer BEI PIs: Chirlmin Joo (TNW/BN), Carlas Smith (3mE/DCSC) >> 3D-printing bacterial electrodes for CO2 conversion In order to achieve a sustainable future, we need to use abundant molecules such as CO2, water and renewable electricity to create our organic chemicals and fuels. Microorganisms have the ability to enable upgrading of CO2 by microbial electrosynthesis. In this project, Ludovic Jourdin of Biotechnology (TNW) and Kunal Masania of the Shaping Matter Lab (LR) will team up to explore strategies to shape carbon electrodes into hierarchical porous electrodes for microbial electrosynthesis and study the role of hierarchical porosity on microbial and electrochemical activity. Project title: BACTRODE: Hierarchical 3D-printing of bacterial electrodes for breakthrough in CO2 conversion BEI PIs: Ludovic Jourdin (TNW/BT), Kunal Masania (LR/SML)

04 December 2020

In Memoriam: Prof.dr.ir. Herman van Bekkum (1932 – 2020)

It is with great sadness that I inform you of the passing away of our esteemed professor emeritus Herman van Bekkum on 30 November 2020. Herman van Bekkum was Rector Magnificus of Delft University of technology from 1975 to 1976 and worked at TU Delft from 1955 to 1998. During this time, he worked for Shell for a brief period between 1959 and 1961, but he ultimately chose to make TU Delft his home, and a very successful choice that was. After his retirement in 1998 he remained active in our faculty for many years, both within Chemical Engineering and the catalysis community. He meant a lot to the university, especially to the Faculty of Applied Sciences. Herman van Bekkum was a versatile chemist with a near limitless zest for work. He made major contributions to science, especially in the field of catalytic applications of zeolites and ordered mesoporous materials and non-food applications of sugars. More importantly, his infectious enthusiasm conveyed his love of organic chemistry to colleagues and students alike, and enabled him to inspire great achievements in them. This quality was rewarded in 1996 when TU Delft named him a Professor of Excellence. Herman van Bekkum always sought co-operation with industry, and managed to secure extensive funding that he could put towards satisfying his enormous creativity and curiosity. He performed various managerial positions within and beyond TU Delft. Within TU Delft he served as Rector Magnificus in the 1975-1976 academic year, and beyond the confines of the university his positions included that of president of the Royal Netherlands Chemical Society (KNCV). From 1995, he was a member of the Royal Netherlands Academy of Arts and Sciences (KNAW), an important academic distinction. In 1980, he was appointed an honorary member of the Technologisch Gezelschap (TG) study association. Enthusiasm, enormous commitment, efficiency in an environment that sometimes verged on the chaotic, and great mental speed and agility characterised his unique personality. Staff members at the faculty of Applied Sciences often had their work cut out keeping up with him in the corridors. And he never failed to track down the exact documents he needed in his crammed study. Herman van Bekkum will be in our memory always, a memory that will be cherished by all at the faculty who had the pleasure of meeting him or working with him. Our sincerest condolences go out to his family. Paulien Herder, ChemE Departmental Director