Filter results

48046 results

The Academic Fringe Festival - Nithya Sambasivan: The Myopia of Model Centrism

The Academic Fringe Festival - Nithya Sambasivan: The Myopia of Model Centrism 11 April 2022 17:00 till 18:00 - Location: Online by Nithya Sambasivan Abstract AI models seek to intervene in increasingly higher stakes domains, such as cancer detection and microloan allocation. What is the view of the world that guides AI development in high risk areas, and how does this view regard the complexity of the real world? In this talk, I will present results from my multi-year inquiry into how fundamentals of AI systems---data, expertise, and fairness---are viewed in AI development. I pay particular attention to developer practices in AI systems intended for low-resource communities, especially in the Global South, where people are enrolled as labourers or untapped DAUs. Despite the inordinate role played by these fundamentals on model outcomes, data work is under-valued; domain experts are reduced to data-entry operators; and fairness and accountability assumptions do not scale past the West. Instead, model development is glamourised, and model performance is viewed as the indicator of success. The overt emphasis on models, at the cost of ignoring these fundamentals, leads to brittle and reductive interventions that ultimately displace functional and complex real-world systems in low-resource contexts. I put forth practical implications for AI research and practice to shift away from model centrism to enabling human ecosystems; in effect, building safer and more robust systems for all. Speaker Biography Dr. Nithya Sambasivan is a sociotechnical researcher whose work is in solving hard, socially-important design problems impacting marginalised communities in the Global South. Her current research re-imagines AI fundamentals to work for low-resource communities. Dr. Sambasivan's work has been widely covered in venues like VentureBeat, ZDnet, Scroll.in, O’Reilly, New Scientist, State of AI report, HackerNews and more, while influencing public policy like the Indian government’s strategy for responsible AI and motivating the NeurIPS Datasets track. As a former Staff Research Scientist at Google Research, she pioneered several original, award-winning research initiatives such as responsible AI in the Global South, human-data interaction, gender equity online, and next billion users, which fundamentally shaped the company’s strategy for emerging markets, besides landing as new products affecting millions of users including in Google Station, Search, YouTube, Android, Maps & more. Dr. Sambasivan founded and managed a blueprint HCI team in Google Research Bangalore, and set up the Accra HCI team, in contexts with limited existing HCI pipelines. Simultaneously, her research has received several best paper awards at top-tier computing conferences. Homepage: https://nithyasambasivan.com/ . More information In this second edition on the topic of "Responsible Use of Data", we take a multi-disciplinary view and explore further lessons learned from success stories and examples in which the irresponsible use of data can create and foster inequality and inequity, perpetuate bias and prejudice, or produce unlawful or unethical outcomes. Our aim is to discuss and draw certain guidelines to make the use of data a responsible practice. Join us To receive announcements of upcoming presentations and events organized by TAFF and get the Zoom link to join the presentations, join our mailing list . TAFF-WIS Delft Visit the website of The Academic Fringe Festival

Half Height Horizontal

How storm surge barriers can keep the Netherlands safe and liveable

A safe and liveable delta, who doesn't go for that? Storm surge barriers play a crucial role in this. Yet there are many choices to be made in the short term to keep the storm surge barriers in a good condition, to eventually cope with rising sea levels in the longer term. A new project receives funding from NWO for five years to explore the best routes to a liveable delta. Storm surge barriers, like the Maeslantkering and the Oosterscheldekering are essential for protecting the Netherlands from high water coming in from the sea. How long will these imposing structures remain effective bearing in mind sea level rise, decay of the structures and an altering surrounding area. In the short term, decisions will have to be taken on maintenance, while in the longer term, adaptation or replacement should be considered. Linking storm surge barriers with the delta Within the SSB-Δ (storm surge barrier delta) project, a diverse consortium will investigate under what circumstances storm surge barriers can keep the Netherlands safe and liveable. The consortium consists of the universities of Delft, Utrecht, and Rotterdam; the universities of applied sciences of Rotterdam and Zeeland; knowledge institutes Deltares and TNO, as well as Rijkswaterstaat, water boards and companies. Bram van Prooijen, associate professor at TU Delft, will lead the research: “Decisions on flood defences are important for the entire delta. The link between the hinterland and the flood defences needs to be made properly. During this project, we will have the opportunity to bring different areas of expertise together and strengthen each other.” Long term perspective Therefore, the research is not only about the technical lifespan of the barriers. It will also clarify how the delta is going to change and how society thinks about it, resulting in a guideline to on how and when decisions need to be taken in the short term, with a long term perspective. Van Prooijen cites an example of car maintenance: “Think of replacing the engine block. This is very expensive maintenance, but sometimes necessary to keep the car running safely. But is it worth the investment if you plan to buy a new car next year? Or if you prefer to travel by train? Important choices will have to be made for storm surge barriers. We want to provide a strong basis for that.” Informed decisions The project will reveal the possible pathways to a liveable delta, and how storm surge barriers fit into that. Van Prooijen: “That offers clarity, to make quick and better-informed decisions. Many trials run for a long time, with the outcome of this research we can decide which trials specifically are the best option to proceed with.” Future experts One of the storm surge barriers involved in the research is the Maeslantkering. This barrier is expected to last another fifty years or so. That may seem far away, Van Prooijen reasons, “but we need to train the experts who will decide on this now. Those are probably the PhD students on this project.”

Researchers hand over Position Paper to Tweede Kamer

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.