Filter results

48046 results

Laurens Valk

Faculty of Mechanical, Maritime and Materials Engineering Laurens obtained his master’s double degree in Mechanical Engineering and in Systems & Control. He chose to conduct research in the area of control theory. Control theory deals with the behaviour of dynamical systems, aiming to develop methods to better understand and control these systems. Laurens generalized, improved and extended an energy-based control concept in the area of so-called passivity-based control. His innovative method enables distributed control design for a large class of applications, such as human‐machine and human‐swarm interaction. For example, using his approach, human operators can cooperate with and control the behaviour of entire swarms in a simple-to-use, intuitive, and safe way, even if the different individual dynamical systems that form the swarm (e.g. flexible robot arms, unmanned aerial vehicles, etc.) would be difficult to control directly by a human operator. Given the outstanding quality of the work and the high potential impact for applications, Laurens already got two papers published. His thesis was rewarded with the highest grade possible (10). On top of his academic excellence, Laurens is also a successful book author. His handbook on Lego Mindstorms is very popular, according to the Amazon Best Sellers Rank the #1 in Children’s Books, Computers & Technology, Hardware & Robotics. “It is impressive how much Laurens has learned about a highly challenging field in a very short time. The success in and dedication to accessible knowledge dissemination demonstrate both his didactic talent and his unpretentious nature.” Graduation committee – Prof. Heike Vallery, Dr Tamas Keviczky Thesis synopsis The research field of distributed control studies networks of interconnected systems, such as water networks or autonomous vehicle networks. In robotics, distributed control is about making multiple robots cooperate, such as to collaboratively lift and transport an object. In practice, many conventional control techniques are not directly applicable to robots with a limited number of actuators, also known as underactuated systems. This thesis presents techniques to enable stable distributed control of underactuated systems. Relying on a principle similar to the conservation of energy, we show that it is possible to stabilize individual underactuated systems, while simultaneously achieving a group objective such as driving or flying in a prescribed formation. The proposed technique is constructive, allowing a wide range of previously found solutions for individual robots to be used in a distributed control framework. The results have applications in industrial robotics as well as in safe human-robot interaction.

Anne van Lieren

Faculty of Industrial Design Engineering Anne completed her master’s degree in Strategic Product Design. For her thesis, she focussed on the concept of nudging, a psychological construct that proposes positive reinforcement and indirect suggestions as ways to influence the behaviour of individuals. In her thesis, Anne summarized and classified the majority of more than a hundred known nudging techniques. She executed seven case studies with service designers and their clients to analyse the value of different nudging techniques in a service design process. She developed the new and inspiring concept of rational overrides: micro moments of friction that can be used to disrupt mindless automatic reactions, prompt moments of reflection, and ultimately change behaviour. Anne used this concept to develop a theoretical framework and toolkit. The theoretical framework has been further developed in a research paper that Anne presented at a major international conference on design research. Furthermore, Anne managed to design a real usable service design toolkit, which was tested with real clients and proved to be a very usable solution to help designers in developing meaningful and positive behavioural change. She received an impressive 9.5 for her thesis “Anne took great care to communicate her work in a highly understandable and engaging (visual) language. An additional proof that she is a real designer.” Graduation committee - Prof. J.P.L. Schoormans, Dr G. Calabretta, Lavans Løvlie Thesis synopsis Organisations are increasingly keen to influence behaviour; from banks that urge people to save for future income to healthcare organisations that encourage healthier lifestyles. These organizations, and the designers that they hire to do the job, are struggling to change behaviour since it is complex, dynamic and very often not rational. In this graduation project, knowledge from behavioural sciences was incorporate in the service design practice. The research demonstrated that, next to the well-known nudging approach, micro moments of friction are crucial to changing behaviour. Moments of friction, also referred to as rational overrides, cause people to pause and notice what they’re doing automatically – and so enable them to make a more conscious decision. An alternative design approach and service design toolkit was created to enable designers and organizations to benefit from an enhanced ability to understand, predict and influence customer behaviour.

Jacopo Zamboni

Faculty of Aeropace Engineering Jacopo obtained his master’s degree in Aerospace Engineering. For his thesis he developed a method for the conceptual design of hybrid electric aircraft. Society demands future aircraft to be more fuel-efficient to limit their negative impact on our climate and still warrant a sustainable growth of the aviation industry. Jacopo developed a design methodology based on fundamental theories of flight, electrical engineering, and aircraft design. He demonstrated the versatility of his method by designing various future aircraft relying on different hybrid-electric architectures. By performing a thorough validation of each of the subcomponents of the methodology, he convinced the graduation committee of the validity of his results. Furthermore, Jacopo outlined three distinctive paths forward for hybrid-electric propulsion, with overall reductions in energy consumption ranging between 6% and 35% for the most conservative and most progressive technology assumptions, respectively. Jacopo received a 9 for his thesis and will present the contents of his work on the international AIAA SCITECH conference. “Jacopo is an excellent student with a deep passion for aviation and aircraft design in particular. His thesis is original, scientifically sound and very relevant with respect to developments within society” Graduation committee – Dr R. Vos, Prof. L. L. M. Veldhuis, P. C. Roling MSc, R. de Vries MSc Thesis synposis As the aviation sector keeps expanding, a growing interest in technologies that can reduce the dependency from non-renewable energy sources, both for economic and environmental reasons, has led researchers to investigate the opportunities offered by the electrification of flight. However, fully electric designs are not viable in the foreseeable future, as the performance characteristics of the electric devices are still not comparable with the achievements of fuel-burning propulsive systems. A proposed solution is to electrify only a fraction of the aircraft system while the technology maturity level is still advancing. The use of two energy sources opens the design space and allows for the experimentation with novel aircraft configurations that could lead to interesting energy consumption reductions. However, established methods for aircraft design become obsolete as the required complex configurations and control strategies cannot be modelled. Therefore, the objective of this project was the development of a conceptual design procedure that can be applied to size and analyse any hybrid electric architecture that remains simple enough to be usable at the start of the design.

Guillermo Ortiz Jiménez

Faculty of Electrical Engineering, Mathematics & Computer Science Guillermo obtained his master’s degree in Electrical Engineering. He chose a graduation project in the field of signal processing. He first dived into the topic of deep learning, a machine learning technique that teaches computers to learn by example. He examined whether he could extend classical deep learning techniques, meant to classify audio signals or images, to techniques useful for classifying signals supported by an irregular structure. Such learning methods can be used to classify complicated non-structured data such as measurements from body sensors. Guillermo managed to quickly develop a graph-convolutional deep network structure, which successfully classified the irregular signals. Guillermo also tackled the topic of sparse sensing, a technique to reduce the number of sensors in a sensing system. He established a complete sparse sensing framework. His work can, for example, help movie recommender systems (such as Netflix) to pick movies and users in a clever way to predict all preferences. Guillermo is the first to introduce such a framework and his work is truly ground-breaking. A conference paper has already been accepted for one of the main conferences of the IEEE Signal Processing Society. His thesis was rewarded with the highest possible grade (10). “With Guillermo you can always have very mature discussions and brainstorming sessions with interesting outcomes. He is one of the best MSc students I ever met.” Graduation committee - Prof. GJ.T. Leus, Dr S.P. Chepuri, Dr R. Hendriks, Dr D. Tax Thesis synposis In this new era of data science, Machine Learning (ML) and Signal Processing (SP) are becoming the key driving forces of the fourth industrial revolution. They are paving the way for the genesis of new disruptive applications across many fields, ranging from the biomedical sciences to the ICT and manufacturing industries. Most of the tools in ML and SP, however, can only be applied to signals residing on a regular grid, e.g. audio and image signals. In my thesis, hence, I extended these tools to signals that lie on irregular domains with a graph structure, e.g. traffic networks, 3D meshes, or social network graphs. In particular, I developed two mathematical frameworks: one for the classification of graph signals using tools from deep learning and one for their sampling. The applications of my thesis are diverse varying from brain signal decoding (classification) to the automatic recommendation of items in e-commerce (sampling).

Eleni Chronopoulou

Faculty of Architecture and the Built Environment Eleni completed her master’s degree Architecture, Urbanism and Building Science in the summer of 2018. Her thesis explores how landscape architecture has the capacity to work as an integrative common ground, bringing together conflicting notions such as natural and engineered, formal and informal, concept and reality, process and form, the designed landscape and the practices of everyday life. Eleni researched the landscape of Kifissos, a heavily abused river area in Athens, Greece. This area has become part of the city’s infrastructural network, functioning as a highway and a sewage collector. The once natural dynamic river banks are now replaced with strict concrete boundaries, expressing a conceived necessity to dominate nature. Eleni describes the case of Kifissos as oppositions of uncontrolled dynamic natural processes and an over-controlled landscape. The oppositions are addressed in her graduation work through an alternative reading of the existing landscape sustained by theory, in search for latent conditions of coexistence. Extracted from their habitual settings, Eleni translated these conditions into design concepts. This combination has resulted in a flexible landscape architectural framework that integrates social, environmental, and technical aspects. Her thesis was rewarded with the highest possible grade (10). “Eleni’s thesis is an outstanding contribution to the discipline of landscape architecture, combining theory and design in a clever innovative way.” Graduation committee – Dr Inge Bobbink, Dr Esther Gramsbergen, Alexander de Ridder MSc Thesis synopsis Kifissos is an abused urban river in Athens: a heavily polluted landscape suffering from deadly flood events that have been escalating together with the city’s growth. The river’s containment within concrete boundaries reflects a conceived necessity to over-control unpredictable natural dynamics, reflecting an opposition between man and nature. Furthermore, the unnegotiable linearity of the river results in one more division: between rich, formally designed neighbourhoods and poor districts which have grown informally, outside the control of urban plans. To address these oppositions, the design starts from an excavation on the existing site, investigating the common grounds between conflicting notions: between natural and engineered, formal and informal, the designed landscape and the practices of everyday life. The extracted conditions of coexistence are translated into design tools able to incorporate social, environmental, and technical aspects closely related to the realities of the existing milieu.

Half Height Horizontal

How storm surge barriers can keep the Netherlands safe and liveable

A safe and liveable delta, who doesn't go for that? Storm surge barriers play a crucial role in this. Yet there are many choices to be made in the short term to keep the storm surge barriers in a good condition, to eventually cope with rising sea levels in the longer term. A new project receives funding from NWO for five years to explore the best routes to a liveable delta. Storm surge barriers, like the Maeslantkering and the Oosterscheldekering are essential for protecting the Netherlands from high water coming in from the sea. How long will these imposing structures remain effective bearing in mind sea level rise, decay of the structures and an altering surrounding area. In the short term, decisions will have to be taken on maintenance, while in the longer term, adaptation or replacement should be considered. Linking storm surge barriers with the delta Within the SSB-Δ (storm surge barrier delta) project, a diverse consortium will investigate under what circumstances storm surge barriers can keep the Netherlands safe and liveable. The consortium consists of the universities of Delft, Utrecht, and Rotterdam; the universities of applied sciences of Rotterdam and Zeeland; knowledge institutes Deltares and TNO, as well as Rijkswaterstaat, water boards and companies. Bram van Prooijen, associate professor at TU Delft, will lead the research: “Decisions on flood defences are important for the entire delta. The link between the hinterland and the flood defences needs to be made properly. During this project, we will have the opportunity to bring different areas of expertise together and strengthen each other.” Long term perspective Therefore, the research is not only about the technical lifespan of the barriers. It will also clarify how the delta is going to change and how society thinks about it, resulting in a guideline to on how and when decisions need to be taken in the short term, with a long term perspective. Van Prooijen cites an example of car maintenance: “Think of replacing the engine block. This is very expensive maintenance, but sometimes necessary to keep the car running safely. But is it worth the investment if you plan to buy a new car next year? Or if you prefer to travel by train? Important choices will have to be made for storm surge barriers. We want to provide a strong basis for that.” Informed decisions The project will reveal the possible pathways to a liveable delta, and how storm surge barriers fit into that. Van Prooijen: “That offers clarity, to make quick and better-informed decisions. Many trials run for a long time, with the outcome of this research we can decide which trials specifically are the best option to proceed with.” Future experts One of the storm surge barriers involved in the research is the Maeslantkering. This barrier is expected to last another fifty years or so. That may seem far away, Van Prooijen reasons, “but we need to train the experts who will decide on this now. Those are probably the PhD students on this project.”

Researchers hand over Position Paper to Tweede Kamer

On behalf of the TU Delft PowerWeb Institute, researchers Kenneth Brunninx and Simon Tindemans are handing over a Position Paper to the Dutch Parliament on 14 November 2024, with a possible solution to the major grid capacity problems that are increasingly cropping up in the Netherlands. The Netherlands is unlikely to meet the 2030 climate targets, and one of the reasons for this is that large industry cannot switch to electricity fast enough, partly because of increasingly frequent problems around grid capacity and grid congestion. In all likelihood, those problems will actually increase this decade before they can decrease, the researchers argue. The solution offered by the TU Delft PowerWeb Institute researchers is the ‘flexible backstop’. With a flexible backstop, the current capacity of the power grid can be used more efficiently without sacrificing safety or reliability. A flexible backstop is a safety mechanism that automatically and quickly reduces the amount of electricity that an electric unit can draw from the grid (an electric charging station or a heat pump) or deliver (a PV installation). It is a small device connected or built into an electrical unit, such as a charging station or heat pump, that ‘communicates’ with the distribution network operator. In case of extreme stress on the network, the network operator sends a signal to the device to limit the amount of power. Germany recently introduced a similar system with electric charging stations. The backstop would be activated only in periods of acute congestion problems and could help prevent the last resort measure, which is cutting off electricity to users. ‘Upgrading the electricity network remains essential, but in practice it will take years. So there is a need for short-term solutions that can be integrated into long-term planning. We, the members of the TU Delft PowerWeb Institute, call on the government, network operators and regulator to explore the flexible backstop as an additional grid security measure,’ they said. The entire Paper can be read here . Kenneth Brunninx Associate Professor at the Faculty of Engineering, Governance and Management, where he uses quantitative models to evaluate energy policy and market design with the aim of reducing CO2 emissions. Simon Tindemans is Associate Professor in the Intelligent Electrical Power Grids group at Faculty of Electrical Engineering, Mathematics and Computer Science. His research interests include uncertainty and risk management for power grids. TU Delft PowerWeb Institute is a community of researchers who are investigating how to make renewable energy systems reliable, future proof and accessible to everyone.